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Chapter I

Introduction

SAP2000, ETABS, SAFE, and CSiBridge are software packages from Computers
and Structures, Inc. for structural analysis and design. Each package is a fully inte-
grated system for modeling, analyzing, designing, and optimizing structures of a
particular type:

* SAP2000 for general structures, including stadiums, towers, industrial plants,
offshore structures, piping systems, buildings, dams, soils, machine parts and
many others

» ETABS for building structures

* SAFE for floor slabs and base mats

» (CSiBridge for bridge structures
At the heart of each of these software packages is a common analysis engine, re-
ferred to throughout this manual as SAPfire. This engine is the latest and most pow-

erful version of the well-known SAP series of structural analysis programs. The
purpose of this manual is to describe the features of the SAPfire analysis engine.

Throughout this manual reference may be made to the program SAP2000, although
it often applies equally to ETABS, SAFE, and CSiBridge. Not all features de-
scribed will actually be available in every level of each program.
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Analysis Features

The SAPfire analysis engine offers the following features:

Static and dynamic analysis

Linear and nonlinear analysis

Dynamic seismic analysis and static pushover analysis

Vehicle live-load analysis for bridges

Geometric nonlinearity, including P-delta and large-displacement effects
Staged (incremental) construction

Creep, shrinkage, and aging effects

Buckling analysis

Steady-state and power-spectral-density analysis

Frame and shell structural elements, including beam-column, truss, membrane,
and plate behavior

Cable and Tendon elements

Two-dimensional plane and axisymmetric solid elements
Three-dimensional solid elements

Nonlinear link and support elements
Frequency-dependent link and support properties
Multiple coordinate systems

Many types of constraints

A wide variety of loading options
Alpha-numeric labels

Large capacity

Highly efficient and stable solution algorithms

These features, and many more, make CSI product the state-of-the-art for structural
analysis. Note that not all of these features may be available in every level of
SAP2000, ETABS, SAFE, and CSiBridge.

2 Analysis Features
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Structural Analysis and Design

The following general steps are required to analyze and design a structure using
SAP2000, ETABS, SAFE, and CSiBridge:

1. Create or modify a model that numerically defines the geometry, properties,
loading, and analysis parameters for the structure

2. Perform an analysis of the model
3. Review the results of the analysis
4. Check and optimize the design of the structure

This is usually an iterative process that may involve several cycles of the above se-
quence of steps. All of these steps can be performed seamlessly using the SAP2000,
ETABS, SAFE, and CSiBridge graphical user interfaces.

About This Manual

This manual describes the theoretical concepts behind the modeling and analysis
features offered by the SAPfire analysis engine that underlies the various structural
analysis and design software packages from Computers and Structures, Inc. The
graphical user interface and the design features are described in separate manuals
for each program.

It is imperative that you read this manual and understand the assumptions and pro-
cedures used by these software packages before attempting to use the analysis fea-
tures.

Throughout this manual reference may be made to the program SAP2000, although
it often applies equally to ETABS, SAFE, and CSiBridge. Not all features de-
scribed will actually be available in every level of each program.

Each Chapter of this manual is divided into topics and subtopics. All Chapters be-
gin with a list of topics covered. These are divided into two groups:

 Basic topics — recommended reading for all users

Structural Analysis and Design 3
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» Advanced topics — for users with specialized needs, and for all users as they
become more familiar with the program.

Following the list of topics is an Overview which provides a summary of the Chap-
ter. Reading the Overview for every Chapter will acquaint you with the full scope
of the program.

Typographical Conventions

Throughout this manual the following typographic conventions are used.

Bold for Definitions

Bold roman type (e.g., example) is used whenever a new term or concept is de-
fined. For example:

The global coordinate system is a three-dimensional, right-handed, rectangu-
lar coordinate system.

This sentence begins the definition of the global coordinate system.

Bold for Variable Data

Bold roman type (e.g., example) is used to represent variable data items for which
you must specify values when defining a structural model and its analysis. For ex-
ample:

The Frame element coordinate angle, ang, is used to define element orienta-
tions that are different from the default orientation.

Thus you will need to supply a numeric value for the variable ang if it is different
from its default value of zero.

Italics for Mathematical Variables

Normal italic type (e.g., example) is used for scalar mathematical variables, and
bold italic type (e.g., example) is used for vectors and matrices. If a variable data
item is used in an equation, bold roman type is used as discussed above. For exam-
ple:

0<da<db<lL

4 Typographical Conventions
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Here da and db are variables that you specify, and L is a length calculated by the
program.

Italics for Emphasis

Normal italic type (e.g., example) is used to emphasize an important point, or for
the title of a book, manual, or journal.

Capitalized Names

Capitalized names (e.g., Example) are used for certain parts of the model and its
analysis which have special meaning to SAP2000. Some examples:

Frame element
Diaphragm Constraint
Frame Section

Load Pattern

Common entities, such as “joint” or “element” are not capitalized.

Bibliographic References

References are indicated throughout this manual by giving the name of the
author(s) and the date of publication, using parentheses. For example:

See Wilson and Tetsuji (1983).
It has been demonstrated (Wilson, Yuan, and Dickens, 1982) that ...

All bibliographic references are listed in alphabetical order in Chapter “Refer-
ences” (page 527).

Bibliographic References 5
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Objects and Elements

The physical structural members in a structural model are represented by objects.
Using the graphical user interface, you “draw” the geometry of an object, then “as-
sign” properties and loads to the object to completely define the model of the physi-
cal member. For analysis purposes, SAP2000 converts each object into one or more
elements.

Basic Topics for All Users
* Objects
* Objects and Elements
* Groups

Objects

The following object types are available, listed in order of geometrical dimension:

* Point objects, of two types:

— Joint objects: These are automatically created at the corners or ends of all
other types of objects below, and they can be explicitly added to represent
supports or to capture other localized behavior.

Objects 7
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— Grounded (one-joint) link/support objects: Used to model special sup-
port behavior such as isolators, dampers, gaps, multi-linear springs, and
more.

» Line objects, of four types
— Frame objects: Used to model beams, columns, braces, and trusses
— Cable objects: Used to model slender cables under self weight and tension
— Tendon objects: Used to prestressing tendons within other objects

— Connecting (two-joint) link/support objects: Used to model special
member behavior such as isolators, dampers, gaps, multi-linear springs,
and more. Unlike frame, cable, and tendon objects, connecting link objects
can have zero length.

* Area objects: Shell elements (plate, membrane, and full-shell) used to model
walls, floors, and other thin-walled members; as well as two-dimensional sol-
ids (plane-stress, plane-strain, and axisymmetric solids).

* Solid objects: Used to model three-dimensional solids.
As a general rule, the geometry of the object should correspond to that of the physi-

cal member. This simplifies the visualization of the model and helps with the de-
sign process.

Objects and Elements

8

If you have experience using traditional finite element programs, including earlier
versions of SAP2000, ETABS, and SAFE, you are probably used to meshing phys-
ical models into smaller finite elements for analysis purposes. Object-based model-
ing largely eliminates the need for doing this.

For users who are new to finite-element modeling, the object-based concept should
seem perfectly natural.

When you run an analysis, SAP2000 automatically converts your object-based
model into an element-based model that is used for analysis. This element-based
model is called the analysis model, and it consists of traditional finite elements and
joints (nodes). Results of the analysis are reported back on the object-based model.

You have control over how the meshing is performed, such as the degree of refine-
ment, and how to handle the connections between intersecting objects. You also
have the option to manually mesh the model, resulting in a one-to-one correspon-
dence between objects and elements.

Objects and Elements
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In this manual, the term “element” will be used more often than “object”, since
what is described herein is the finite-element analysis portion of the program that
operates on the element-based analysis model. However, it should be clear that the
properties described here for elements are actually assigned in the interface to the
objects, and the conversion to analysis elements is automatic.

One specific case to be aware of is that both one-joint (grounded) link/support ob-
jects and two-joint (connecting) link/support objects are always converted into
two-joint link/support elements. For the two-joint objects, the conversion to ele-
ments is direct. For the one-joint objects, a new joint is created at the same location
and is fully restrained. The generated two-joint link/support element is of zero
length, with its original joint connected to the structure and the new joint connected
to ground by restraints.

Groups

A group is a named collection of objects that you define. For each group, you must
provide a unique name, then select the objects that are to be part of the group. You
can include objects of any type or types in a group. Each object may be part of one
of more groups. All objects are always part of the built-in group called “ALL”.

Groups are used for many purposes in the graphical user interface, including selec-
tion, design optimization, defining section cuts, controlling output, and more. In
this manual, we are primarily interested in the use of groups for defining staged
construction. See Topic “Staged Construction” (page 79) in Chapter “Nonlinear
Static Analysis” for more information.

Groups 9
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Coordinate Systems

Each structure may use many different coordinate systems to describe the location
of points and the directions of loads, displacement, internal forces, and stresses.
Understanding these different coordinate systems is crucial to being able to prop-
erly define the model and interpret the results.

Basic Topics for All Users
* Overview
* Global Coordinate System
» Upward and Horizontal Directions
* Defining Coordinate Systems

* Local Coordinate Systems

Advanced Topics
* Alternate Coordinate Systems

* Cylindrical and Spherical Coordinates
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Overview

Coordinate systems are used to locate different parts of the structural model and to
define the directions of loads, displacements, internal forces, and stresses.

All coordinate systems in the model are defined with respect to a single global coor-
dinate system. Each part of the model (joint, element, or constraint) has its own lo-
cal coordinate system. In addition, you may create alternate coordinate systems that
are used to define locations and directions.

All coordinate systems are three-dimensional, right-handed, rectangular (Carte-
sian) systems. Vector cross products are used to define the local and alternate coor-
dinate systems with respect to the global system.

SAP2000 always assumes that Z is the vertical axis, with +Z being upward. The up-
ward direction is used to help define local coordinate systems, although local coor-
dinate systems themselves do not have an upward direction.

The locations of points in a coordinate system may be specified using rectangular
or cylindrical coordinates. Likewise, directions in a coordinate system may be
specified using rectangular, cylindrical, or spherical coordinate directions at a
point.

Global Coordinate System

12

The global coordinate system is a three-dimensional, right-handed, rectangular
coordinate system. The three axes, denoted X, Y, and Z, are mutually perpendicular
and satisfy the right-hand rule.

Locations in the global coordinate system can be specified using the variables x, y,
and z. A vector in the global coordinate system can be specified by giving the loca-
tions of two points, a pair of angles, or by specifying a coordinate direction. Coor-
dinate directions are indicated using the values £X, +Y, and +Z. For example, +X
defines a vector parallel to and directed along the positive X axis. The sign is re-
quired.

All other coordinate systems in the model are ultimately defined with respect to the
global coordinate system, either directly or indirectly. Likewise, all joint coordi-
nates are ultimately converted to global X, Y, and Z coordinates, regardless of how
they were specified.

Overview
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Upward and Horizontal Directions

SAP2000 always assumes that Z is the vertical axis, with +Z being upward. Local
coordinate systems for joints, elements, and ground-acceleration loading are de-
fined with respect to this upward direction. Self-weight loading always acts down-
ward, in the —Z direction.

The X-Y plane is horizontal. The primary horizontal direction is +X. Angles in the
horizontal plane are measured from the positive half of the X axis, with positive an-
gles appearing counterclockwise when you are looking down at the X-Y plane.

If you prefer to work with a different upward direction, you can define an alternate
coordinate system for that purpose.

Defining Coordinate Systems

Each coordinate system to be defined must have an origin and a set of three,
mutually-perpendicular axes that satisfy the right-hand rule.

The origin is defined by simply specifying three coordinates in the global coordi-
nate system.

The axes are defined as vectors using the concepts of vector algebra. A fundamental
knowledge of the vector cross product operation is very helpful in clearly under-
standing how coordinate system axes are defined.

Vector Cross Product

A vector may be defined by two points. It has length, direction, and location in
space. For the purposes of defining coordinate axes, only the direction is important.
Hence any two vectors that are parallel and have the same sense (i.e., pointing the
same way) may be considered to be the same vector.

Any two vectors, ¥, and V), that are not parallel to each other define a plane that is
parallel to them both. The location of this plane is not important here, only its orien-
tation. The cross product of ¥, and ¥V, defines a third vector, V,, that is perpendicular
to them both, and hence normal to the plane. The cross product is written as:

Vi=VixVj

Upward and Horizontal Directions 13
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The length of V, is not important here. The side of the V-V, plane to which ¥, points
is determined by the right-hand rule: The vector V, points toward you if the acute
angle (less than 180°) from ¥ to V, appears counterclockwise.

Thus the sign of the cross product depends upon the order of the operands:

Vix Vi=—Vix V;

Defining the Three Axes Using Two Vectors

A right-handed coordinate system R-S-T can be represented by the three mutually-
perpendicular vectors V,, V,, and V, respectively, that satisfy the relationship:

Vi=Vex Vs
This coordinate system can be defined by specifying two non-parallel vectors:

* An axis reference vector, Vg, that is parallel to axis R

* A plane reference vector, Vp, thatis parallel to plane R-S, and points toward the
positive-S side of the R axis

The axes are then defined as:

Vr:Va
Vt: er Vp
Vs: VtX Vr

Note that V, can be any convenient vector parallel to the R-S plane; it does not have
to be parallel to the S axis. This is illustrated in Figure 1 (page 15).

Local Coordinate Systems

14

Each part (joint, element, or constraint) of the structural model has its own local co-
ordinate system used to define the properties, loads, and response for that part. The
axes of the local coordinate systems are denoted 1, 2, and 3. In general, the local co-
ordinate systems may vary from joint to joint, element to element, and constraint to
constraint.

There is no preferred upward direction for a local coordinate system. However, the
upward +Z direction is used to define the default joint and element local coordinate
systems with respect to the global or any alternate coordinate system.

Local Coordinate Systems
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V, is parallel to R axis
Vp is parallel to R-S plane

V,=V,
Ve=V,x Vp
Ve=Vix V,

Vp

Plane R-S
Cube is shown for

visualization purposes

Global

Figure 1
Determining an R-S-T Coordinate System from Reference Vectors Vq and Vp

The joint local 1-2-3 coordinate system is normally the same as the global X-Y-Z
coordinate system. However, you may define any arbitrary orientation for a joint
local coordinate system by specifying two reference vectors and/or three angles of
rotation.

For the Frame, Area (Shell, Plane, and Asolid), and Link/Support elements, one of
the element local axes is determined by the geometry of the individual element.
You may define the orientation of the remaining two axes by specifying a single
reference vector and/or a single angle of rotation. The exception to this is one-joint
or zero-length Link/Support elements, which require that you first specify the lo-
cal-1 (axial) axis.

The Solid element local 1-2-3 coordinate system is normally the same as the global
X-Y-Z coordinate system. However, you may define any arbitrary orientation for a
solid local coordinate system by specifying two reference vectors and/or three an-
gles of rotation.

The local coordinate system for a Body, Diaphragm, Plate, Beam, or Rod Con-
straint is normally determined automatically from the geometry or mass distribu-
tion of the constraint. Optionally, you may specify one local axis for any Dia-

Local Coordinate Systems 15
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phragm, Plate, Beam, or Rod Constraint (but not for the Body Constraint); the re-
maining two axes are determined automatically.

The local coordinate system for an Equal Constraint may be arbitrarily specified;
by default it is the global coordinate system. The Local Constraint does not have its
own local coordinate system.

For more information:

* See Topic “Local Coordinate System” (page 24) in Chapter “Joints and De-
grees of Freedom.”

* See Topic “Local Coordinate System” (page 108) in Chapter “The Frame Ele-
ment.”

* See Topic “Local Coordinate System” (page 185) in Chapter “The Shell Ele-
ment.”

* See Topic “Local Coordinate System” (page 217) in Chapter “The Plane Ele-
ment.”

* See Topic “Local Coordinate System” (page 227) in Chapter “The Asolid Ele-
ment.”

* See Topic “Local Coordinate System” (page 240) in Chapter “The Solid Ele-
ment.”

e See Topic “Local Coordinate System” (page 253) in Chapter “The Link/Sup-
port Element—Basic.”

* See Chapter “Constraints and Welds (page 49).”

Alternate Coordinate Systems

16

You may define alternate coordinate systems that can be used for locating the
joints; for defining local coordinate systems for joints, elements, and constraints;
and as a reference for defining other properties and loads. The axes of the alternate
coordinate systems are denoted X, Y, and Z.

The global coordinate system and all alternate systems are called fixed coordinate
systems, since they apply to the whole structural model, not just to individual parts
as do the local coordinate systems. Each fixed coordinate system may be used in
rectangular, cylindrical or spherical form.

Associated with each fixed coordinate system is a grid system used to locate objects
in the graphical user interface. Grids have no meaning in the analysis model.

Alternate Coordinate Systems
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Each alternate coordinate system is defined by specifying the location of the origin
and the orientation of the axes with respect to the global coordinate system. You
need:

* The global X, Y, and Z coordinates of the new origin

* The three angles (in degrees) used to rotate from the global coordinate system
to the new system

Cylindrical and Spherical Coordinates

The location of points in the global or an alternate coordinate system may be speci-
fied using polar coordinates instead of rectangular X-Y-Z coordinates. Polar coor-
dinates include cylindrical CR-CA-CZ coordinates and spherical SB-SA-SR coor-
dinates. See Figure 2 (page 19) for the definition of the polar coordinate systems.
Polar coordinate systems are always defined with respect to a rectangular X-Y-Z
system.

The coordinates CR, CZ, and SR are lineal and are specified in length units. The co-
ordinates CA, SB, and SA are angular and are specified in degrees.

Locations are specified in cylindrical coordinates using the variables cr, ca, and cz.
These are related to the rectangular coordinates as:

cr=\/x2 +y2

-1
ca = tan

|

CZ=17

Locations are specified in spherical coordinates using the variables sb, sa, and sr.
These are related to the rectangular coordinates as:

" X2 +y2
sb = tan
z

-1
sa = tan

sr=\lx2 -i—y2 +2°

|

Cylindrical and Spherical Coordinates 17
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18

A vector in a fixed coordinate system can be specified by giving the locations of
two points or by specifying a coordinate direction at a single point P. Coordinate
directions are tangential to the coordinate curves at point P. A positive coordinate
direction indicates the direction of increasing coordinate value at that point.

Cylindrical coordinate directions are indicated using the values *CR, =CA, and
+CZ. Spherical coordinate directions are indicated using the values £SB, £SA, and
+SR. The sign is required. See Figure 2 (page 19).

The cylindrical and spherical coordinate directions are not constant but vary with
angular position. The coordinate directions do not change with the lineal coordi-
nates. For example, +SR defines a vector directed from the origin to point P.

Note that the coordinates Z and CZ are identical, as are the corresponding coordi-
nate directions. Similarly, the coordinates CA and SA and their corresponding co-
ordinate directions are identical.

Cylindrical and Spherical Coordinates
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+CZ
Z,CZ A

+CA

+CR

Cylindrical

Coordinates ¢z

Cubes are shown for
visualization purposes

Spherical
Coordinates

Figure 2
Cylindrical and Spherical Coordinates and Coordinate Directions

Cylindrical and Spherical Coordinates

19
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Chapter IV

Joints and Degrees of Freedom

The joints play a fundamental role in the analysis of any structure. Joints are the
points of connection between the elements, and they are the primary locations in
the structure at which the displacements are known or are to be determined. The
displacement components (translations and rotations) at the joints are called the de-
grees of freedom.

This Chapter describes joint properties, degrees of freedom, loads, and output. Ad-
ditional information about joints and degrees of freedom is given in Chapter “Con-
straints and Welds” (page 49).

Basic Topics for All Users
* Overview
* Modeling Considerations
* Local Coordinate System
* Degrees of Freedom
* Restraint Supports
* Spring Supports
» Joint Reactions

» Base Reactions

2|



CSI Analysis Reference Manual

Masses

Force Load

Degree of Freedom Output
Assembled Joint Mass Output
Displacement Output

Force Output

Advanced Topics

Advanced Local Coordinate System
Nonlinear Supports

Distributed Supports

Ground Displacement Load
Generalized Displacements

Element Joint Force Output
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Joints, also known as nodal points or nodes, are a fundamental part of every struc-
tural model. Joints perform a variety of functions:

All elements are connected to the structure (and hence to each other) at the
joints
The structure is supported at the joints using Restraints and/or Springs

Rigid-body behavior and symmetry conditions can be specified using Con-
straints that apply to the joints

Concentrated loads may be applied at the joints

Lumped (concentrated) masses and rotational inertia may be placed at the
joints

All loads and masses applied to the elements are actually transferred to the
joints

Joints are the primary locations in the structure at which the displacements are
known (the supports) or are to be determined

All of these functions are discussed in this Chapter except for the Constraints,
which are described in Chapter “Constraints and Welds” (page 49).

Overview
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Joints in the analysis model correspond to point objects in the structural-object
model. Using the SAP2000, ETABS, SAFE, or CSiBridge graphical user interface,
joints (points) are automatically created at the ends of each Line object and at the
corners of each Area and Solid object. Joints may also be defined independently of
any object.

Automatic meshing of objects will create additional joints corresponding to any el-
ements that are created.

Joints may themselves be considered as elements. Each joint may have its own lo-
cal coordinate system for defining the degrees of freedom, restraints, joint proper-
ties, and loads; and for interpreting joint output. In most cases, however, the global
X-Y-Z coordinate system is used as the local coordinate system for all joints in the
model. Joints act independently of each other unless connected by other elements.

There are six displacement degrees of freedom at every joint — three translations
and three rotations. These displacement components are aligned along the local co-
ordinate system of each joint.

Joints may be loaded directly by concentrated loads or indirectly by ground dis-
placements acting though Restraints, spring supports, or one-joint (grounded)
Link/Support objects.

Displacements (translations and rotations) are produced at every joint. Reaction
forces and moments acting at each supported joint are also produced.

For more information, see Chapter “Constraints and Welds” (page 49).

Modeling Considerations

The location of the joints and elements is critical in determining the accuracy of the
structural model. Some of the factors that you need to consider when defining the
elements, and hence the joints, for the structure are:

* The number of elements should be sufficient to describe the geometry of the
structure. For straight lines and edges, one element is adequate. For curves and
curved surfaces, one element should be used for every arc of 15° or less.

* Element boundaries, and hence joints, should be located at points, lines, and
surfaces of discontinuity:

— Structural boundaries, e.g., corners and edges

— Changes in material properties

Modeling Considerations 23



CSI Analysis Reference Manual

— Changes in thickness and other geometric properties
— Support points (Restraints and Springs)

— Points of application of concentrated loads, except that Frame elements
may have concentrated loads applied within their spans

* In regions having large stress gradients, i.e., where the stresses are changing
rapidly, an Area- or Solid-element mesh should be refined using small ele-
ments and closely-spaced joints. This may require changing the mesh after one
or more preliminary analyses.

* More that one element should be used to model the length of any span for
which dynamic behavior is important. This is required because the mass is al-
ways lumped at the joints, even if it is contributed by the elements.

Local Coordinate System

Each joint has its own joint local coordinate system used to define the degrees of
freedom, Restraints, properties, and loads at the joint; and for interpreting joint out-
put. The axes of the joint local coordinate system are denoted 1, 2, and 3. By default
these axes are identical to the global X, Y, and Z axes, respectively. Both systems
are right-handed coordinate systems.

The default local coordinate system is adequate for most situations. However, for
certain modeling purposes it may be useful to use different local coordinate sys-
tems at some or all of the joints. This is described in the next topic.

For more information:

* See Topic “Upward and Horizontal Directions” (page 13) in Chapter “Coordi-
nate Systems.”

* See Topic “Advanced Local Coordinate System” (page 24) in this Chapter.

Advanced Local Coordinate System
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By default, the joint local 1-2-3 coordinate system is identical to the global X-Y-Z
coordinate system, as described in the previous topic. However, it may be neces-
sary to use different local coordinate systems at some or all joints in the following
cases:

» Skewed Restraints (supports) are present

* Constraints are used to impose rotational symmetry

Local Coordinate System
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» Constraints are used to impose symmetry about a plane that is not parallel to a
global coordinate plane

* The principal axes for the joint mass (translational or rotational) are not aligned
with the global axes

+ Joint displacement and force output is desired in another coordinate system

Joint local coordinate systems need only be defined for the affected joints. The
global system is used for all joints for which no local coordinate system is explicitly
specified.

A variety of methods are available to define a joint local coordinate system. These
may be used separately or together. Local coordinate axes may be defined to be par-
allel to arbitrary coordinate directions in an arbitrary coordinate system or to vec-
tors between pairs of joints. In addition, the joint local coordinate system may be
specified by a set of three joint coordinate angles. These methods are described in
the subtopics that follow.

For more information:

* See Chapter “Coordinate Systems” (page 11).
» See Topic “Local Coordinate System” (page 24) in this Chapter.

Reference Vectors

To define a joint local coordinate system you must specify two reference vectors
that are parallel to one of the joint local coordinate planes. The axis reference vec-
tor, V,, must be parallel to one of the local axes (/ = 1, 2, or 3) in this plane and

have a positive projection upon that axis. The plane reference vector, V,, must

have a positive projection upon the other local axis (j = 1, 2, or 3, but / #j) in this
plane, but need not be parallel to that axis. Having a positive projection means that
the positive direction of the reference vector must make an angle of less than 90°
with the positive direction of the local axis.

Together, the two reference vectors define a local axis, /, and a local plane, i-j.
From this, the program can determine the third local axis, &, using vector algebra.

For example, you could choose the axis reference vector parallel to local axis 1 and
the plane reference vector parallel to the local 1-2 plane (/= 1, j =2). Alternatively,
you could choose the axis reference vector parallel to local axis 3 and the plane ref-
erence vector parallel to the local 3-2 plane (/ =3, =2). You may choose the plane
that is most convenient to define using the parameter local, which may take on the
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values 12, 13, 21, 23, 31, or 32. The two digits correspond to / and j, respectively.
The default is value is 31.

Defining the Axis Reference Vector

To define the axis reference vector for joint j, you must first specify or use the de-
fault values for:
* A coordinate direction axdir (the default is +Z)

» A fixed coordinate system csys (the default is zero, indicating the global coor-
dinate system)

You may optionally specify:

* A pair of joints, axveca and axvecb (the default for each is zero, indicating
joint j itself). If both are zero, this option is not used.

For each joint, the axis reference vector is determined as follows:

1. A vector is found from joint axveca to joint axvecb. If this vector is of finite
length, it is used as the reference vector V,,

2. Otherwise, the coordinate direction axdir is evaluated at joint j in fixed coordi-
nate system csys, and is used as the reference vector V,,

Defining the Plane Reference Vector

To define the plane reference vector for joint j, you must first specify or use the de-
fault values for:
* A primary coordinate direction pldirp (the default is +X)

» A secondary coordinate direction pldirs (the default is +Y). Directions pldirs
and pldirp should not be parallel to each other unless you are sure that they are
not parallel to local axis 1

* A fixed coordinate system csys (the default is zero, indicating the global coor-
dinate system). This will be the same coordinate system that was used to define
the axis reference vector, as described above

You may optionally specify:

* A pair of joints, plveca and plvecb (the default for each is zero, indicating joint
j itself). If both are zero, this option is not used.
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For each joint, the plane reference vector is determined as follows:

1. A vector is found from joint plveca to joint plvecb. If this vector is of finite
length and is not parallel to local axis /, it is used as the reference vector V,

2. Otherwise, the primary coordinate direction pldirp is evaluated at joint j in
fixed coordinate system csys. If this direction is not parallel to local axis /, it is
used as the reference vector V,,

3. Otherwise, the secondary coordinate direction pldirs is evaluated at joint j in
fixed coordinate system csys. If this direction is not parallel to local axis /, it is
used as the reference vector V,,

4. Otherwise, the method fails and the analysis terminates. This will never happen
if pldirp is not parallel to pldirs

A vector is considered to be parallel to local axis / if the sine of the angle between
them is less than 107,

Determining the Local Axes from the Reference Vectors

The program uses vector cross products to determine the local axes from the refer-
ence vectors. The three axes are represented by the three unit vectors V;, V, and
V3, respectively. The vectors satisfy the cross-product relationship:

Vl :Vz ><V3

The local axis V; is given by the vector V, after it has been normalized to unit
length.

The remaining two axes, Vj and V,, are defined as follows:

» [If/and; permute in a positive sense, i.e., local = 12, 23, or 31, then:
Vi, =V;xV, and
V; =V xV;

» [f/and; permute in a negative sense, i.e., local =21, 32, or 13, then:
Vi =V, xV,; and
V,=V; xV;

An example showing the determination of the joint local coordinate system using
reference vectors is given in Figure 3 (page 28).
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V, is parallel to axveca-axvecb
Vp is parallel to plveca-plvecb

V§= V%
V2=V3xV, Allvectors normalized to unit length.
V1= VbX V3

Vs v,

plveca Plane 3-1

axveca

Global
axvecb

Figure 3
Example of the Determination of the Joint Local Coordinate System
Using Reference Vectors for local=31

Joint Coordinate Angles

The joint local coordinate axes determined from the reference vectors may be fur-
ther modified by the use of three joint coordinate angles, denoted a, b, and ¢. In
the case where the default reference vectors are used, the joint coordinate angles de-
fine the orientation of the joint local coordinate system with respect to the global
axes.

The joint coordinate angles specify rotations of the local coordinate system about
its own current axes. The resulting orientation of the joint local coordinate system
is obtained according to the following procedure:

1. The local system is first rotated about its +3 axis by angle a
2. The local system is next rotated about its resulting +2 axis by angle b
3. The local system is lastly rotated about its resulting +1 axis by angle ¢

The order in which the rotations are performed is important. The use of coordinate
angles to orient the joint local coordinate system with respect to the global system is
shown in Figure 4 (page 29).
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Step 1: Rotation about
local 3 axis by angle a

Step 2: Rotation about new
local 2 axis by angle b

Step 3: Rotation about new
local 1 axis by angle ¢

Figure 4
Use of Joint Coordinate Angles to Orient the Joint Local Coordinate System
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Degrees of Freedom
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The deflection of the structural model is governed by the displacements of the
joints. Every joint of the structural model may have up to six displacement compo-
nents:

» The joint may translate along its three local axes. These translations are de-
noted Ul, U2, and U3.

* The joint may rotate about its three local axes. These rotations are denoted R1,
R2, and R3.

These six displacement components are known as the degrees of freedom of the
joint. In the usual case where the joint local coordinate system is parallel to the
global system, the degrees of freedom may also be identified as UX, UY, UZ, RX,
RY and RZ, according to which global axes are parallel to which local axes. The
joint local degrees of freedom are illustrated in Figure 5 (page 31).

In addition to the regular joints that you explicitly define as part of your structural
model, the program automatically creates master joints that govern the behavior of
any Constraints and Welds that you may have defined. Each master joint has the
same six degrees of freedom as do the regular joints. See Chapter “Constraints and
Welds” (page 49) for more information.

Each degree of freedom in the structural model must be one of the following types:

* Active — the displacement is computed during the analysis

* Restrained — the displacement is specified, and the corresponding reaction is
computed during the analysis

* Constrained — the displacement is determined from the displacements at other
degrees of freedom

* Null — the displacement does not affect the structure and is ignored by the
analysis

» Unavailable — the displacement has been explicitly excluded from the analy-
sis

These different types of degrees of freedom are described in the following subtop-
ics.

Degrees of Freedom
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u3

\\(R1

U1 u2

Figure 5
The Six Displacement Degrees of Freedom in the Joint Local Coordinate System

Available and Unavailable Degrees of Freedom

Youmay explicitly specify the global degrees of freedom that are available to every
joint in the structural model. By default, all six degrees of freedom are available to
every joint. This default should generally be used for all three-dimensional struc-
tures.

For certain planar structures, however, you may wish to restrict the available de-
grees of freedom. For example, in the X-Y plane: a planar truss needs only UX and
UY; a planar frame needs only UX, UY, and RZ; and a planar grid or flat plate
needs only UZ, RX, and RY.

The degrees of freedom that are not specified as being available are called unavail-
able degrees of freedom. Any stiffness, loads, mass, Restraints, or Constraints that
are applied to the unavailable degrees of freedom are ignored by the analysis.

The available degrees of freedom are always referred to the global coordinate sys-
tem, and they are the same for every joint in the model. If any joint local coordinate
systems are used, they must not couple available degrees of freedom with the un-
available degrees of freedom at any joint. For example, if the available degrees of
freedom are UX, UY, and RZ, then all joint local coordinate systems must have one
local axis parallel to the global Z axis.

Degrees of Freedom 3l
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Restrained Degrees of Freedom

If the displacement of a joint along any one of its available degrees of freedom is
known, such as at a support point, that degree of freedom is restrained. The known
value of the displacement may be zero or non-zero, and may be different in differ-
ent Load Patterns. The force along the restrained degree of freedom that is required
to impose the specified restraint displacement is called the reaction, and is deter-
mined by the analysis.

Unavailable degrees of freedom are essentially restrained. However, they are ex-
cluded from the analysis and no reactions are computed, even if they are non-zero.

See Topic “Restraint Supports” (page 34) in this Chapter for more information.

Constrained Degrees of Freedom

Any joint that is part of a Constraint or Weld may have one or more of its available
degrees of freedom constrained. The program automatically creates a master joint
to govern the behavior of each Constraint, and a master joint to govern the behavior
of each set of joints that are connected together by a Weld. The displacement of a
constrained degree of freedom is then computed as a linear combination of the dis-
placements along the degrees of freedom at the corresponding master joint.

If a constrained degree of freedom is also restrained, the restraint will be applied to
the constraint as a whole.

See Chapter “Constraints and Welds” (page 49) for more information.

Mixing Restraints and Constraints Not Recommended

It is not recommended that restrained degrees of freedom also be constrained, al-
though it is permitted. Reactions computed at such degrees of freedom will not in-
clude the contributions to the reaction from joints connected by constraints.
Ground displacement loads applied at the constraint will not be applied to the joints
connected by constraint. For better results, use springs or grounded (one-joint)
link/support objects to support joints that are also constrained.

Similarly, it is not recommended, that a given degree of freedom be included in
more than one constraint, although it is permitted. The analysis will attempt to com-
bine the coupled constraints, but the results may not be as accurate as using a single
constraint for all coupled joints, especially for dynamics. For better results, include
all coupled joints in a single constraint whenever possible.

Degrees of Freedom
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Note that using fixed degrees of freedom in a link/support property is the same as
specifying a constraint. For this reason, such link/support objects should not be
connected together or connected to constrained joints. In such cases, it is better to
use large (but not too large) stiffnesses rather that fixed degrees of freedom in the
link/support property definition.

Active Degrees of Freedom

All available degrees of freedom that are neither constrained nor restrained must be
either active or null. The program will automatically determine the active degrees
of freedom as follows:

 Ifany load or stiffness is applied along any translational degree of freedom at a
joint, then all available translational degrees of freedom at that joint are made
active unless they are constrained or restrained.

» If any load or stiffness is applied along any rotational degree of freedom at a
joint, then all available rotational degrees of freedom at that joint are made ac-
tive unless they are constrained or restrained.

» All degrees of freedom at a master joint that govern constrained degrees of
freedom are made active.

A joint that is connected to any element or to a translational spring will have all of
its translational degrees of freedom activated. A joint that is connected to a Frame,
Shell, or Link/Support element, or to any rotational spring will have all of its rota-
tional degrees of freedom activated. An exception is a Frame element with only
truss-type stiffness, which will not activate rotational degrees of freedom.

Every active degree of freedom has an associated equation to be solved. If there are
N active degrees of freedom in the structure, there are N equations in the system,
and the structural stiffness matrix is said to be of order N. The amount of computa-
tional effort required to perform the analysis increases with N.

The load acting along each active degree of freedom is known (it may be zero). The
corresponding displacement will be determined by the analysis.

If there are active degrees of freedom in the system at which the stiffness is known
to be zero, such as the out-of-plane translation in a planar-frame, these must either
be restrained or made unavailable. Otherwise, the structure is unstable and the solu-
tion of the static equations will fail.

For more information:

» See Topic “Springs” (page 36) in this Chapter.
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* See Topic “Degrees of Freedom” (page 108) in Chapter “The Frame Element.”
* See Topic “Degrees of Freedom” (page 170) in Chapter “The Cable Element.”
* See Topic “Degrees of Freedom” (page 181) in Chapter “The Shell Element.”

* See Topic “Degrees of Freedom” (page 217) in Chapter “The Plane Element.”
* See Topic “Degrees of Freedom” (page 227) in Chapter “The Asolid Element.”
* See Topic “Degrees of Freedom” (page 240) in Chapter “The Solid Element.”

* See Topic “Degrees of Freedom” (page 253) in Chapter “The Link/Support El-
ement—DBasic.”

* See Topic “Degrees of Freedom” (page 312) in Chapter “The Tendon Object.”

Null Degrees of Freedom

The available degrees of freedom that are not restrained, constrained, or active, are
called the null degrees of freedom. Because they have no load or stiffness, their dis-
placements and reactions are zero, and they have no effect on the rest of the struc-
ture. The program automatically excludes them from the analysis.

Joints that have no elements connected to them typically have all six degrees of
freedom null. Joints that have only solid-type elements (Plane, Asolid, and Solid)
connected to them typically have the three rotational degrees of freedom null.

Restraint Supports
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If the displacement of a joint along any of its available degrees of freedom has a
known value, either zero (e.g., at support points) or non-zero (e.g., due to support
settlement), a Restraint must be applied to that degree of freedom. The known
value of the displacement may differ from one Load Pattern to the next, but the de-
gree of freedom is restrained for all Load Patterns. In other words, it is not possible
to have the displacement known in one Load Pattern and unknown (unrestrained) in
another Load Pattern.

Restraints should also be applied to any available degrees of freedom in the system
at which the stiffness is known to be zero, such as the out-of-plane translation and
in-plane rotations of a planar-frame. Otherwise, the structure is unstable and the so-
lution of the static equations will complain.

Restraints are always applied to the joint local degrees of freedom U1, U2, U3, R1,
R2, and R3. Examples of Restraints are shown in Figure 6 (page 35).

Restraint Supports
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7
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2-D Frame Structure, X-Z plane

Figure 6
Examples of Restraints
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If a restraint is applied to an unavailable degree of freedom, it is ignored. The dis-
placement will be zero, but no reaction will be computed.

In general, you should not apply restraints to constrained degrees of freedom. How-
ever, if you do, the analysis will attempt to automatically rewrite the constraint
equations to accommodate the restraint. Reactions computed at such degrees of
freedom will not include the contributions to the reaction from joints connected by
constraints. Ground displacement loads applied at the constraint will not be applied
to the joints connected by constraint. For better results, use springs or grounded
(one-joint) Link/Supports to support joints that are also constrained.

For more information:

* See Topic “Degrees of Freedom” (page 30) in this Chapter.
* See Topic “Restraint Displacement Load” (page 42) in this Chapter.

Spring Supports
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Any of'the six degrees of freedom at any of the joints in the structure can have trans-
lational or rotational spring support conditions. These springs elastically connect
the joint to the ground. Spring supports along restrained degrees of freedom do not
contribute to the stiffness of the structure.

Springs may be specified that couple the degrees of freedom at a joint. The spring
forces that act on a joint are related to the displacements of that joint by a 6x6 sym-
metric matrix of spring stiffness coefficients. These forces tend to oppose the dis-
placements.

Spring stiffness coefficients may be specified in the global coordinate system, an
Alternate Coordinate System, or the joint local coordinate system.

In a joint local coordinate system, the spring forces and moments ', F,, F, M, M,
and M, at a joint are given by:

F, [ul wlu2 ulu3d wulrl ulr2 ulrd] |y (Eqn. 1)
F, u2  u2ud uw2rl uw2r2 u2r3d| u,
Fs | u3  u3rl u3r2 u3rd | |u;
M [ 1 rir2 rie3 || n
M, sym. r2 r2r3||n
M, | 3 ||

Spring Supports
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where u, u,, u, r, r,and r, are the joint displacements and rotations, and the terms
ul, ulu2, u2, ... are the specified spring stiffness coefficients.

In any fixed coordinate system, the spring forces and moments ¥, F,, F,, M,, M and
M_ at a joint are given by:

F, [ux uxuy wuxuz uxrx uxry uxrz|(u,
F y uy uyuz uyrx uyry uyrz |u,
F. | uz  uzZrx uzry uzrz | |u,
M. o rX IXry IXrz||r,
M, sym. ry ryrz||r,
M . | rz || r,

where u, u, u, r, r,and r, are the joint displacements and rotations, and the terms
ux, uxuy, uy, ... are the specified spring stiffness coefficients.

For springs that do not couple the degrees of freedom in a particular coordinate sys-
tem, only the six diagonal terms need to be specified since the off-diagonal terms
are all zero. When coupling is present, all 21 coefficients in the upper triangle of the
matrix must be given; the other 15 terms are then known by symmetry.

If the springs at a joint are specified in more than one coordinate system, standard
coordinate transformation techniques are used to convert the 6x6 spring stiffness
matrices to the joint local coordinate system, and the resulting stiffness matrices are
then added together on a term-by-term basis. The final spring stiffness matrix at
each joint in the structure should have a determinant that is zero or positive. Other-
wise the springs may cause the structure to be unstable.

The displacement of the grounded end of the spring may be specified to be zero or
non-zero (e.g., due to support settlement). This spring displacement may vary
from one Load Pattern to the next.

For more information:

* See Topic “Degrees of Freedom” (page 30) in this Chapter.
* See Topic “Spring Displacement Load” (page 43) in this Chapter.

Nonlinear Supports

In certain versions of the program, you may define nonlinear supports at the joints
using the Link/Support element. Nonlinear support conditions that can be modeled
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include gaps (compression only), multi-linear elastic or plastic springs, viscous
dampers, base isolators, and more.

This Link/Support can be used in two ways:

* You can add (draw) a one-joint object, in which case it is considered a Support
object, and it connects the joint directly to the ground.

* The object can also be drawn with two joints, in which case it is considered a
Link object. You can use a Link object as a support if you connect one end to
the structure, and fully restrain the other end.

Both methods have the same effect. During analysis, one-joint Support objects are
converted to two-joint Link elements of zero length, and connected to a generated
joint that is fully restrained.

Multiple Link/Support elements can be connected to a single joint, in which case
they act in parallel. Each Link/Support element has its own element local coordi-
nate system that is independent of the joint local coordinate system.

Restraints and springs may also exist at the joint. Of course, any degree of freedom
that is restrained will prevent deformation in the Link/Support element in that di-
rection.

See Chapters “The Link/Support Element — Basic” (page 251) and “The Link/Sup-
port Element — Advanced” (page 275) for more information.

Distributed Supports
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You may assign distributed spring supports along the length of a Frame element, or
over the any face of an area object (Shell, Plane, Asolid) or Solid element. These
springs may be linear, multi-linear elastic, or multi-linear plastic. These springs are
converted to equivalent two-joint Link/Support elements acting at the joints of the
element, after accounting for the tributary length or area of the element. The gener-
ated Link/Support elements are of zero length, with one end connected to the parent
object, and the other end connected to a generated joint that is fully restrained.

Because these springs act at the joints, it may be necessary to mesh the elements to
capture localized effects of such distributed supports. The best way to do this is
usually to use the automatic internal meshing options available in the graphical user
interface. This allows you to change the meshing easily, while still being able to
work with large, simpler model objects.

Distributed Supports
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It is not possible to assign distributed restraint supports directly. However, when
using automatic internal meshing, you may optionally specify that the meshed ele-
ments use the same restraint conditions that are present on the parent object.

For more information, see Topics “Restraint Supports” (page 34), “Spring Sup-
port” (page 36), “Nonlinear Supports” (page 37) in this Chapter, and also Chapter
“Objects and Elements” (page 7.)

Joint Reactions

The force or moment along the degree of freedom that is required to enforce any
support condition is called the reaction, and it is determined by the analysis. The
reaction includes the forces (or moments) from all supports at the joint, including
restraints, springs, and one-joint Link/Support objects. The tributary effect of any
distributed supports is included in the reaction.

If a one-joint Link/Support object is used, the reaction will be reported at the origi-
nal joint connected to the structure, not at the restrained end of the generated
two-joint Link/Support element. The reaction at the generated joint will be reported
as zero since it has been transferred to the original joint.

For more information, see Topics “Restraint Supports” (page 34), “Spring Sup-
port” (page 36), “Nonlinear Supports” (page 37), and “Distributed Supports” (page
38) in this Chapter.

Base Reactions

Base Reactions are the resultant force and moment of all the joint reactions acting
on the structure, computed at the global origin or at some other location that you
choose. This produces three force components and three moment components. The
base forces are not affected by the chosen location, but the base moments are. For
seismic analysis the horizontal forces are called the base shears, and the moments
about the horizontal axes are called the overturning moments.

Base reactions are available for all Load Cases and Combos except for Mov-
ing-Load Load Cases. The centroids (center of action) are also available for each
force component of the base reactions. Note that these are the centroids of the reac-
tions, which may not always be the same as the centroids of the applied load caus-
ing the reaction.

For more information, see Topic “Joint Reactions” (page 39) in this Chapter.
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Masses

40

In a dynamic analysis, the mass of the structure is used to compute inertial forces.
Normally, the mass is obtained from the elements using the mass density of the ma-
terial and the volume of the element. This automatically produces lumped (uncou-
pled) masses at the joints. The element mass values are equal for each of the three
translational degrees of freedom. No mass moments of inertia are produced for the
rotational degrees of freedom. This approach is adequate for most analyses.

It is often necessary to place additional concentrated masses and/or mass moments
of inertia at the joints. These can be applied to any of the six degrees of freedom at
any of the joints in the structure.

For computational efficiency and solution accuracy, SAP2000 always uses lumped
masses. This means that there is no mass coupling between degrees of freedom at a
joint or between different joints. These uncoupled masses are always referred to the
local coordinate system of each joint. Mass values along restrained degrees of free-
dom are ignored.

Inertial forces acting on the joints are related to the accelerations at the joints by a
6x6 matrix of mass values. These forces tend to oppose the accelerations. In a joint
local coordinate system, the inertia forces and moments ', F,, F, M, M, and M, at
a joint are given by:

F, ul 0 0 0 0 0](i
F, w2 0 0 0 0|
Fy| w3 0 0 0| i
M [ r1 0 0|7
M, sym. r2 0||#
My | 3] |7

where iiy, iiy, ii3, 17, ¥, and 7y are the translational and rotational accelerations at
the joint, and the terms ul, u2, u3, r1, r2, and r3 are the specified mass values.

Uncoupled joint masses may instead be specified in the global coordinate system,
in which case they are transformed to the joint local coordinate system. Coupling
terms will be generated during this transformation in the following situation:

* The joint local coordinate system directions are not parallel to global coordi-
nate directions, and

* The three translational masses or the three rotational mass moments of inertia
are not equal at a joint.

Masses
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Shape in
plan

Mass Moment of Inertia about vertical axis
(normal to paper) through center of mass

Formula

N

Rectangular diaphragm:
Uniformly distributed mass per unit area

MMIgy = M(b%+d?)

d Total mass of diaphragm = M (or w/g) 12
c.m. —
Y
c.m. . Trigngular diaphragm: . Use general
Uniformly distributed mass per unit area diaphragm formula
X X Total mass of diaphragm = M (or w/g)

Y

N
c.m. vy

Circular diaphragm:
Uniformly distributed mass per unit area
Total mass of diaphragm = M (or w/g)

Md?

MMIigm =

c.m.

General diaphragm:
Uniformly distributed mass per unit area
Total mass of diaphragm = M (or w/g)
Area of diaphragm = A
Moment of inertia of area about X-X = Iy
Moment of inertia of area about Y-Y = Iy

MMicm = M(I)/SIY)

Y
\
\

Y

[
y

e

c.m.

Line mass:
Uniformly distributed mass per unit length
Total mass of line = M (or w/g)

MMigm = M

2,

c.m.

Axis transformation for a mass:
If mass is a point mass, MMIg =0

MMl = MMIg + MD?

Figure 7

Formulae for Mass Moments of Inertia

Masses
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Force

These coupling terms will be discarded by the program, resulting in some loss of
accuracy. For this reason, it is recommended that you choose joint local coordinate
systems that are aligned with the principal directions of translational or rotational
mass at a joint, and then specify mass values in these joint local coordinates.

Mass values must be given in consistent mass units (/#/g) and mass moments of in-
ertia must be in WL"/g units. Here W is weight, L is length, and g is the acceleration
due to gravity. The net mass values at each joint in the structure should be zero or
positive.

See Figure 7 (page 41) for mass moment of inertia formulations for various planar
configurations.

For more information:

* See Topic “Degrees of Freedom” (page 30) in this Chapter.
* See Topic “Mass Source” (page 334) in Chapter “Load Patterns”.
* See Chapter “Static and Dynamic Analysis” (page 341).

Load

The Force Load is used to apply concentrated forces and moments at the joints.
Values may be specified in a fixed coordinate system (global or alternate coordi-
nates) or the joint local coordinate system. All forces and moments at a joint are
transformed to the joint local coordinate system and added together. The specified
values are shown in Figure 8 (page 43).

Forces and moments applied along restrained degrees of freedom add to the corre-
sponding reaction, but do not otherwise affect the structure.

For more information:

* See Topic “Degrees of Freedom” (page 30) in this Chapter.
» See Chapter “Load Patterns” (page 321).

Ground Displacement Load

The Ground Displacement Load is used to apply specified displacements (transla-
tions and rotations) at the grounded end of joint restraints, joint spring, and
one-joint Link/Support objects. Displacements may be specified in a fixed coordi-
nate system (global or alternate coordinates) or the joint local coordinate system.
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u3
Joint Local Coordinates

Global Coordinates
Global
Origin

Figure 8
Specified Values for Force Load and Ground Displacement Load

The specified values are shown in Figure 8 (page 43). All displacements at a joint
are transformed to the joint local coordinate system and added together.

Restraints may be considered as rigid connections between the joint degrees of
freedom and the ground. Springs and one-joint Link/Support objects may be con-
sidered as flexible connections between the joint degrees of freedom and the
ground.

It is very important to understand that ground displacement load applies to the
ground, and does not affect the structure unless the structure is supported by re-
straints, springs, or one-joint Link/Supports in the direction of loading!

Restraint Displacements

If a particular joint degree of freedom is restrained, the displacement of the joint is
equal to the ground displacement along that local degree of freedom. This applies
regardless of whether or not springs are present.
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44

The vertical ground settlement, UZ = -1.000,
is specified as the restraint displacement.

z
The actual restraint displacement that is
GLOBAL imposed on the structure is U3 = -0.866.
X 3 The unrestrained displacement, U1, will be
1 determined by the analysis.
A Sl
(|l
U3 =-0.866
Uz =-1.000
Figure 9

Example of Restraint Displacement Not Aligned with Local Degrees of Freedom

Components of ground displacement that are not along restrained degrees of free-
dom do not load the structure (except possibly through springs and one-joint links).
An example of this is illustrated in Figure 9 (page 44).

The ground displacement, and hence the joint displacement, may vary from one
Load Pattern to the next. If no ground displacement load is specified for a restrained
degree of freedom, the joint displacement is zero for that Load Pattern.

Spring Displacements

The ground displacements at a joint are multiplied by the spring stiffness coefti-
cients to obtain effective forces and moments that are applied to the joint. Spring
displacements applied in a direction with no spring stiffness result in zero applied
load. The ground displacement, and hence the applied forces and moments, may
vary from one Load Pattern to the next.

In a joint local coordinate system, the applied forces and moments /', F,, F, M, M,
and M, at a joint due to ground displacements are given by:

Ground Displacement Load
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F ful 0 0 0 0 0] ug (Eqn. 2)
F, 2 0 0 0 0| ug
Fy | ud 0 0 0| ug
M [ rt 0 0||r,
M, sym. r2 0|7y
M5 | r3 | | 7g3

where u gl> Ugs Ug3, Tgls Tgd and rg3 are the ground displacements and rotations,
and the terms ul, u2, u3, rl, r2, and r3 are the specified spring stiffness coefti-
cients.

The net spring forces and moments acting on the joint are the sum of the forces and
moments given in Equations (1) and (2); note that these are of opposite sign. At a
restrained degree of freedom, the joint displacement is equal to the ground dis-
placement, and hence the net spring force is zero.

For more information:

* See Topic “Restraints and Reactions” (page 34) in this Chapter.
» See Topic “Springs” (page 36) in this Chapter.
» See Chapter “Load Patterns” (page 321).

Link/Support Displacements

One-joint Link/Support objects are converted to zero-length, two-joint Link/Sup-
port elements. A restrained joint is generated and the ground displacement is ap-
plied as a restraint displacement at this generated joint.

The effect of the ground displacement on the structure depends upon the properties
of the Link/Support element connecting the restrained joint to the structure, similar
to how springs supports work, except the Link/Support stiffness may be nonlinear.

Generalized Displacements

A generalized displacement is a named displacement measure that you define. It is
simply a linear combination of displacement degrees of freedom from one or more
joints.

For example, you could define a generalized displacement that is the difference of
the UX displacements at two joints on different stories of a building and name it
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“DRIFTX”. You could define another generalized displacement that is the sum of
three rotations about the Z axis, each scaled by 1/3, and name it “AVGRZ.”

Generalized displacements are primarily used for output purposes, except that you
can also use a generalized displacement to monitor a nonlinear static analysis.

To define a generalized displacement, specify the following:

* A unique name

* The type of displacement measure

» A list of the joint degrees of freedom and their corresponding scale factors that
will be summed to created the generalized displacement

The type of displacement measure can be one of the following:

» Translational: The generalized displacement scales (with change of units) as
length. Coefficients of contributing joint translations are unitless. Coefficients
of contributing joint rotations scale as length.

* Rotational: The generalized displacement is unitless (radians). Coefficients of
joint translations scale as inverse length. Coefficients of joint rotations are
unitless.

Be sure to choose your scale factors for each contributing component to account for
the type of generalized displacement being defined.

Degree of Freedom Output

46

A table of the types of degrees of freedom present at every joint in the model is
printed in the analysis output (.OUT) file under the heading:

DISPLACEMENT DEGREES OF FREEDOM

The degrees of freedom are listed for all of the regular joints, as well as for the mas-
ter joints created automatically by the program. For Constraints, the master joints
are identified by the labels of their corresponding Constraints. For Welds, the mas-
ter joint for each set of joints that are welded together is identified by the label of
one of the welded joints. Joints are printed in alpha-numeric order of the labels.

The type of each of the six degrees of freedom at a joint is identified by the follow-
ing symbols:

(A)  Active degree of freedom
(=)  Restrained degree of freedom

Degree of Freedom Output
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(+) Constrained degree of freedom
() Null or unavailable degree of freedom

The degrees of freedom are always referred to the local axes of the joint. They are
identified in the output as U1, U2, U3, R1, R2, and R3 for all joints. However, if all
regular joints use the global coordinate system as the local system (the usual situa-
tion), then the degrees of freedom for the regular joints are identified as UX, UY,
UZ, RX, RY, and RZ.

The types of degrees of freedom are a property of the structure and are independent
of the Load Cases, except when staged construction is performed.

See Topic “Degrees of Freedom” (page 30) in this Chapter for more information.

Assembled Joint Mass Output

You can request assembled joint masses as part of the analysis results. The mass ata
given joint includes the mass assigned directly to that joint as well as a portion of
the mass from each element connected to that joint. All mass assigned to the ele-
ments is apportioned to the connected joints, so that this table represents the total
mass of the structure. The masses are always referred to the local axes of the joint.

If multiple Mass Sources have been specified, the assembled joint mass output is
provided for each Mass Source that was actually used in the analysis.

For more information:

* See Topic “Masses” (page 40) in this Chapter.
* See Topic “Mass Source” (page 334) in Chapter “Load Patterns”.
» See Chapter “Load Cases” (page 341).

Displacement Output

You can request joint displacements as part of the analysis results on a case by case
basis. For dynamic Load Cases, you can also request velocities and accelerations.
The output is always referred to the local axes of the joint.

* See Topic “Degrees of Freedom” (page 30) in this Chapter.
* See Chapter “Load Cases” (page 341).
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Force Output

Y ou can request joint support forces as part of the analysis results on a case by case
basis. These support forces are called reactions, and are the sum of all forces from
restraints, springs, or one-joint Link/Support objects at that joint. The reactions at
joints that are not supported will be zero.

Note that reactions for one-joint Link/Support objects are not reported at the origi-
nal joint, but rather at a generated joint at the same location with an identifying
label.

The forces and moments are always referred to the local axes of the joint. The val-
ues reported are always the forces and moments that act on the joints. Thus a posi-
tive value of joint force or moment would tend to cause a positive value of joint
translation or rotation along the corresponding degree of freedom if it were not sup-
ported.

For more information:

* See Topic “Degrees of Freedom” (page 30) in this Chapter.
* See Chapter “Load Cases” (page 341).

Element Joint Force Output
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The element joint forces are concentrated forces and moments acting at the joints
of the element that represent the effect of the rest of the structure upon the element
and that cause the deformation of the element. The moments will always be zero for
the solid-type elements: Plane, Asolid, and Solid.

A positive value of force or moment tends to cause a positive value of translation or
rotation of the element along the corresponding joint degree of freedom.

Element joint forces must not be confused with internal forces and moments which,
like stresses, act within the volume of the element.

For a given element, the vector of element joint forces, f, is computed as:
f=Ku-r

where K is the element stiffness matrix, u is the vector of element joint displace-
ments, and r is the vector of element applied loads as apportioned to the joints. The
element joint forces are always referred to the local axes of the individual joints.
They are identified in the output as F1, F2, F3, M1, M2, and M3.

Force Output
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Constraints and Welds

Constraints are used to enforce certain types of rigid-body behavior, to connect to-
gether different parts of the model, and to impose certain types of symmetry condi-
tions. Welds are used to generate a set of constraints that connect together different
parts of the model.

Basic Topics for All Users

Overview

Body Constraint
Plane Definition
Diaphragm Constraint
Plate Constraint

Axis Definition

Rod Constraint

Beam Constraint
Equal Constraint
Welds

49
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Advanced Topics
e Local Constraint
¢ Automatic Master Joints

* Constraint Output

Overview

A constraint consists of a set of two or more constrained joints. The displacements
of each pair of joints in the constraint are related by constraint equations. The types
of behavior that can be enforced by constraints are:

» Rigid-body behavior, in which the constrained joints translate and rotate to-
gether as if connected by rigid links. The types of rigid behavior that can be
modeled are:

Rigid Body: fully rigid for all displacements

Rigid Diaphragm: rigid for membrane behavior in a plane

— Rigid Plate: rigid for plate bending in a plane

Rigid Rod: rigid for extension along an axis
— Rigid Beam: rigid for beam bending on an axis

» Equal-displacement behavior, in which the translations and rotations are equal
at the constrained joints

* Symmetry and anti-symmetry conditions

The use of constraints reduces the number of equations in the system to be solved
and will usually result in increased computational efficiency.

Most constraint types must be defined with respect to some fixed coordinate sys-
tem. The coordinate system may be the global coordinate system or an alternate co-
ordinate system, or it may be automatically determined from the locations of the
constrained joints. The Local Constraint does not use a fixed coordinate system, but
references each joint using its own joint local coordinate system.

Welds are used to connect together different parts of the model that were defined
separately. Each Weld consists of a set of joints that may be joined. The program
searches for joints in each Weld that share the same location in space and constrains
them to act as a single joint.

50 Overview



Chapter V  Constraints and Welds

Body Constraint

A Body Constraint causes all of its constrained joints to move together as a
three-dimensional rigid body. By default, all degrees of freedom at each connected
joint participate. However, you can select a subset of the degrees of freedom to be
constrained.

This Constraint can be used to:

* Model rigid connections, such as where several beams and/or columns frame
together

» Connect together different parts of the structural model that were defined using
separate meshes

* Connect Frame elements that are acting as eccentric stiffeners to Shell elements

Welds can be used to automatically generate Body Constraints for the purpose of
connecting coincident joints.

See Topic “Welds” (page 64) in this Chapter for more information.

Joint Connectivity
Each Body Constraint connects a set of two or more joints together. The joints may
have any arbitrary location in space.

Local Coordinate System

Each Body Constraint has its own local coordinate system, the axes of which are
denoted 1, 2, and 3. These correspond to the X, Y, and Z axes of a fixed coordinate
system that you choose.

Constraint Equations

The constraint equations relate the displacements at any two constrained joints
(subscripts / and j) in a Body Constraint. These equations are expressed in terms of
the translations (u,, u,, and w,), the rotations (r,, r,, and r,), and the coordinates (x,,
X,, and x;), all taken in the Constraint local coordinate system:

ulj = uli +r2i Axz —r3; Ax2

uj = u2i + r3i Axi —r1i Ax3
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where Ax, = x,, —x

u3j = u3i + rii Axa —r2i Axi

rii=rij
i =12
r3i=13j

w A, =x,—x,, and Ax;=x, —x,.

If you omit any particular degree of freedom, the corresponding constraint equation
is not enforced. If you omit a rotational degree of freedom, the corresponding terms
are removed from the equations for the translational degrees of freedom.

Plane Definition

52

The constraint equations for each Diaphragm or Plate Constraint are written with
respect to a particular plane. The location of the plane is not important, only its
orientation.

By default, the plane is determined automatically by the program from the spatial
distribution of the constrained joints as follows:

The centroid of the constrained joints is determined

The second moments of the locations of all of the constrained joints about the
centroid are determined

The principal values and directions of these second moments are found

The direction of the smallest principal second moment is taken as the normal to
the constraint plane; if all constrained joints lie in a unique plane, this smallest
principal moment will be zero

If no unique direction can be found, a horizontal (X-Y) plane is assumed in co-
ordinate system csys; this situation can occur if the joints are coincident or col-
linear, or if the spatial distribution is more nearly three-dimensional than
planar.

You may override automatic plane selection by specifying the following:

csys: A fixed coordinate system (the default is zero, indicating the global coor-
dinate system)

axis: The axis (X, Y, or Z) normal to the plane of the constraint, taken in coor-
dinate system csys.

Plane Definition
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This may be useful, for example, to specify a horizontal plane for a floor with a
small step in it.

Diaphragm Constraint

A Diaphragm Constraint causes all of its constrained joints to move together as a
planar diaphragm that is rigid against membrane deformation. Effectively, all con-
strained joints are connected to each other by links that are rigid in the plane, but do
not affect out-of-plane (plate) deformation.

This Constraint can be used to:

* Model concrete floors (or concrete-filled decks) in building structures, which
typically have very high in-plane stiffness

* Model diaphragms in bridge superstructures

The use of the Diaphragm Constraint for building structures eliminates the numeri-
cal-accuracy problems created when the large in-plane stiffness of a floor dia-
phragm is modeled with membrane elements. It is also very useful in the lateral
(horizontal) dynamic analysis of buildings, as it results in a significant reduction in
the size of the eigenvalue problem to be solved. See Figure 10 (page 54) for an
illustration of a floor diaphragm.

Joint Connectivity

Each Diaphragm Constraint connects a set of two or more joints together. The
joints may have any arbitrary location in space, but for best results all joints should
lie in the plane of the constraint. Otherwise, bending moments may be generated
that are restrained by the Constraint, which unrealistically stiffens the structure. If
this happens, the constraint forces reported in the analysis results may not be in
equilibrium.

Local Coordinate System

Each Diaphragm Constraint has its own local coordinate system, the axes of which
are denoted 1, 2, and 3. Local axis 3 is always normal to the plane of the constraint.
The program arbitrarily chooses the orientation of axes 1 and 2 in the plane. The
actual orientation of the planar axes is not important since only the normal direction
affects the constraint equations. For more information, see Topic “Plane Defini-
tion” (page 52) in this Chapter.
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Rigid Floor Slab
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Figure 10
Use of the Diaphragm Constraint to Model a Rigid Floor Slab

Constraint Equations

The constraint equations relate the displacements at any two constrained joints
(subscripts 7 and j) in a Diaphragm Constraint. These equations are expressed in
terms of in-plane translations (i, and u,), the rotation (,) about the normal, and the
in-plane coordinates (x, and x,), all taken in the Constraint local coordinate system:

ulj = uli—rii Ax2
u2j = u2i + r3j Axi
r3i =13

where Ax, =x, —x,, and Ax,=x, —X,.
y i j i
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Plate Constraint

A Plate Constraint causes all of its constrained joints to move together as a flat plate
that is rigid against bending deformation. Effectively, all constrained joints are
connected to each other by links that are rigid for out-of-plane bending, but do not
affect in-plane (membrane) deformation.

This Constraint can be used to:

* Connect structural-type elements (Frame and Shell) to solid-type elements
(Plane and Solid); the rotation in the structural element can be converted to a
pair of equal and opposite translations in the solid element by the Constraint

* Enforce the assumption that “plane sections remain plane” in detailed models
of beam bending

Joint Connectivity

Each Plate Constraint connects a set of two or more joints together. The joints may
have any arbitrary location in space. Unlike the Diaphragm Constraint, equilibrium
is not affected by whether or not all joints lie in the plane of the Plate Constraint.

Local Coordinate System

Each Plate Constraint has its own local coordinate system, the axes of which are de-
noted 1, 2, and 3. Local axis 3 is always normal to the plane of the constraint. The
program arbitrarily chooses the orientation of axes 1 and 2 in the plane. The actual
orientation of the planar axes is not important since only the normal direction af-
fects the constraint equations.

For more information, see Topic “Plane Definition” (page 52) in this Chapter.

Constraint Equations

The constraint equations relate the displacements at any two constrained joints
(subscripts / and ;) in a Plate Constraint. These equations are expressed in terms of
the out-of-plane translation (u,), the bending rotations (», and r,), and the in-plane
coordinates (x, and x,), all taken in the Constraint local coordinate system:

u3j = u3j + r1i Axa2 — r2i Axy

ri=rij
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i =12j

where Ax, =x, —x,, and Ax,=x, —X,.
v i 2 4

Axis Definition

The constraint equations for each Rod or Beam Constraint are written with respect
to a particular axis. The location of the axis is not important, only its orientation.

By default, the axis is determined automatically by the program from the spatial
distribution of the constrained joints as follows:

The centroid of the constrained joints is determined

The second moments of the locations of all of the constrained joints about the
centroid are determined

The principal values and directions of these second moments are found

The direction of the largest principal second moment is taken as the axis of the
constraint; if all constrained joints lie on a unique axis, the two smallest princi-
pal moments will be zero

If no unique direction can be found, a vertical (Z) axis is assumed in coordinate
system esys; this situation can occur if the joints are coincident, or if the spatial
distribution is more nearly planar or three-dimensional than linear.

You may override automatic axis selection by specifying the following:

csys: A fixed coordinate system (the default is zero, indicating the global coor-
dinate system)

axis: The axis (X, Y, or Z) of the constraint, taken in coordinate system csys.

This may be useful, for example, to specify a vertical axis for a column with a small
offset in it.

Rod Constraint
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A Rod Constraint causes all of its constrained joints to move together as a straight
rod that is rigid against axial deformation. Effectively, all constrained joints main-
tain a fixed distance from each other in the direction parallel to the axis of the rod,
but translations normal to the axis and all rotations are unaffected.

This Constraint can be used to:

Axis Definition
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* Prevent axial deformation in Frame elements

* Model rigid truss-like links

An example of the use of the Rod Constraint is in the analysis of the two-dimen-
sional frame shown in Figure 11 (page 58). If the axial deformations in the beams
are negligible, a single Rod Constraint could be defined containing the five joints.
Instead of five equations, the program would use a single equation to define the
X-displacement of the whole floor. However, it should be noted that this will result
in the axial forces of the beams being output as zero, as the Constraint will cause the
ends of the beams to translate together in the X-direction. Interpretations of such re-
sults associated with the use of Constraints should be clearly understood.

Joint Connectivity

Each Rod Constraint connects a set of two or more joints together. The joints may
have any arbitrary location in space, but for best results all joints should lie on the
axis of the constraint. Otherwise, bending moments may be generated that are re-
strained by the Constraint, which unrealistically stiffens the structure. If this hap-
pens, the constraint forces reported in the analysis results may not be in
equilibrium.

Local Coordinate System

Each Rod Constraint has its own local coordinate system, the axes of which are de-
noted 1,2, and 3. Local axis 1 is always the axis of the constraint. The program arbi-
trarily chooses the orientation of the transverse axes 2 and 3. The actual orientation
of the transverse axes is not important since only the axial direction affects the
constraint equations.

For more information, see Topic “Axis Definition” (page 56) in this Chapter.

Constraint Equations

The constraint equations relate the displacements at any two constrained joints
(subscripts / and j) in a Rod Constraint. These equations are expressed only in terms
of the axial translation (u,):

ulj = uli
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X1 X2 X3 X4 X5
o L o @ ®

Figure 11
Use of the Rod Constraint to Model Axially Rigid Beams

Beam Constraint

A Beam Constraint causes all of its constrained joints to move together as a straight
beam that is rigid against bending deformation. Effectively, all constrained joints
are connected to each other by links that are rigid for off-axis bending, but do not
affect translation along or rotation about the axis.

This Constraint can be used to:

* Connect structural-type elements (Frame and Shell) to solid-type elements
(Plane and Solid); the rotation in the structural element can be converted to a
pair of equal and opposite translations in the solid element by the Constraint

* Prevent bending deformation in Frame elements

Joint Connectivity

Each Beam Constraint connects a set of two or more joints together. The joints may
have any arbitrary location in space, but for best results all joints should lie on the
axis of the constraint. Otherwise, torsional moments may be generated that are re-
strained by the Constraint, which unrealistically stiffens the structure. If this hap-
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pens, the constraint forces reported in the analysis results may not be in
equilibrium.

Local Coordinate System

Each Beam Constraint has its own local coordinate system, the axes of which are
denoted 1, 2, and 3. Local axis 1 is always the axis of the constraint. The program
arbitrarily chooses the orientation of the transverse axes 2 and 3. The actual orienta-
tion of the transverse axes is not important since only the axial direction affects the
constraint equations.

For more information, see Topic “Axis Definition” (page 56) in this Chapter.

Constraint Equations

Equal

The constraint equations relate the displacements at any two constrained joints
(subscripts / and ;) in a Beam Constraint. These equations are expressed in terms of
the transverse translations (1, and u,), the transverse rotations (r, and r,), and the ax-
ial coordinate (x,), all taken in the Constraint local coordinate system:

u2j = u2; + r3j Axi
u3j = u3j —r2i Axy
r2i =12
r3i=13j

where Ax, = x, —x,..

i

Constraint

An Equal Constraint causes all of its constrained joints to move together with the
same displacements for each selected degree of freedom, taken in the constraint lo-
cal coordinate system. The other degrees of freedom are unaffected.

The Equal Constraint differs from the rigid-body types of Constraints in that there
is no coupling between the rotations and the translations.

This Constraint can be used to partially connect together different parts of the struc-
tural model, such as at expansion joints and hinges
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For fully connecting meshes, it is better to use the Body Constraint when the con-
strained joints are not in exactly the same location.

Joint Connectivity

Each Equal Constraint connects a set of two or more joints together. The joints may
have any arbitrary location in space, but for best results all joints should share the
same location in space if used for connecting meshes. Otherwise, moments may be
generated that are restrained by the Constraint, which unrealistically stiffens the
structure. If this happens, the constraint forces reported in the analysis results may
not be in equilibrium.

Local Coordinate System

Each Equal Constraint uses a fixed coordinate system, csys, that you specify. The
default for esys is zero, indicating the global coordinate system. The axes of the
fixed coordinate system are denoted X, Y, and Z.

Selected Degrees of Freedom

For each Equal Constraint you may specify a list, cdofs, of up to six degrees of free-
dom in coordinate system csys that are to be constrained. The degrees of freedom
are indicated as UX, UY, UZ, RX, RY, and RZ.

Constraint Equations

The constraint equations relate the displacements at any two constrained joints
(subscripts / and j) in an Equal Constraint. These equations are expressed in terms
of the translations (u,, u,, and u) and the rotations (r,, r,, and r), all taken in fixed
coordinate system csys:

Uxj = Uxi
Uyj = Uyi
Uzj = Uz
rli = rij
r2i =12
r3i =13j
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If you omit any of the six degrees of freedom from the constraint definition, the cor-
responding constraint equation is not enforced.

Local Constraint

A Local Constraint causes all of its constrained joints to move together with the
same displacements for each selected degree of freedom, taken in the separate joint
local coordinate systems. The other degrees of freedom are unaffected.

The Local Constraint differs from the rigid-body types of Constraints in that there
is no coupling between the rotations and the translations. The Local Constraint is
the same as the Equal Constraint if all constrained joints have the same local coor-
dinate system.

This Constraint can be used to:

* Model symmetry conditions with respect to a line or a point
* Model displacements constrained by mechanisms

The behavior of this Constraint is dependent upon the choice of the local coordinate
systems of the constrained joints.

Joint Connectivity

Each Local Constraint connects a set of two or more joints together. The joints may
have any arbitrary location in space. If the joints do not share the same location in
space, moments may be generated that are restrained by the Constraint. If this hap-
pens, the constraint forces reported in the analysis results may not be in equilib-
rium. These moments are necessary to enforce the desired symmetry of the dis-
placements when the applied loads are not symmetric, or may represent the
constraining action of a mechanism.

For more information, see:

» Topic “Force Output” (page 48) in Chapter “Joints and Degrees of Freedom.”

* Topic “Global Force Balance Output” (page 45) in Chapter “Joints and De-
grees of Freedom.”

Local Constraint 6l
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No Local Coordinate System

A Local Constraint does not have its own local coordinate system. The constraint
equations are written in terms of constrained joint local coordinate systems, which
may differ. The axes of these coordinate systems are denoted 1, 2, and 3.

Selected Degrees of Freedom

For each Local Constraint you may specify a list, ldofs, of up to six degrees of free-
dom in the joint local coordinate systems that are to be constrained. The degrees of
freedom are indicated as U1, U2, U3, R1, R2, and R3.

Constraint Equations

The constraint equations relate the displacements at any two constrained joints
(subscripts / and f) in a Local Constraint. These equations are expressed in terms of
the translations (u,, u,, and ) and the rotations (r,, r,, and r,), all taken in joint local
coordinate systems. The equations used depend upon the selected degrees of free-

dom and their signs. Some important cases are described next.

Axisymmetry

Axisymmetry is a type of symmetry about a line. It is best described in terms of a
cylindrical coordinate system having its Z axis on the line of symmetry. The struc-
ture, loading, and displacements are each said to be axisymmetric about a line if
they do not vary with angular position around the line, i.e., they are independent of
the angular coordinate CA.

To enforce axisymmetry using the Local Constraint:
* Model any cylindrical sector of the structure using any axisymmetric mesh of
joints and elements

* Assign each joint a local coordinate system such that local axes 1, 2, and 3 cor-
respond to the coordinate directions +CR, +CA, and +CZ, respectively

» For each axisymmetric set of joints (i.e., having the same coordinates CR and
CZ, but different CA), define a Local Constraint using all six degrees of free-
dom: U1, U2, U3, R1, R2, and R3

* Restrain joints that lie on the line of symmetry so that, at most, only axial trans-
lations (U3) and rotations (R3) are permitted

The corresponding constraint equations are:

Local Constraint



Chapter V  Constraints and Welds

ulj = uli
uzj = uj
uzj = u3j
rli=rij
12i = 1)
r3i=r3j

The numeric subscripts refer to the corresponding joint local coordinate systems.

Cyclic symmetry

Cyclic symmetry is another type of symmetry about a line. It is best described in
terms of a cylindrical coordinate system having its Z axis on the line of symmetry.
The structure, loading, and displacements are each said to be cyclically symmetric
about a line if they vary with angular position in a repeated (periodic) fashion.

To enforce cyclic symmetry using the Local Constraint:
* Model any number of adjacent, representative, cylindrical sectors of the struc-

ture; denote the size of a single sector by the angle 0

» Assign each joint a local coordinate system such that local axes 1, 2, and 3 cor-
respond to the coordinate directions +CR, +CA, and +CZ, respectively

* For each cyclically symmetric set of joints (i.e., having the same coordinates
CR and CZ, but with coordinate CA differing by multiples of 0), define a Local
Constraint using all six degrees of freedom: U1, U2, U3, R1, R2, and R3.

* Restrain joints that lie on the line of symmetry so that, at most, only axial trans-
lations (U3) and rotations (R3) are permitted

The corresponding constraint equations are:

utj = ulj
u2j = u2;
uzj = u3j
rli=rilj
2i = r2j
r3i =13j
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The numeric subscripts refer to the corresponding joint local coordinate systems.

For example, suppose a structure is composed of six identical 60° sectors, identi-
cally loaded. If two adjacent sectors were modeled, each Local Constraint would
apply to a set of two joints, except that three joints would be constrained on the
symmetry planes at 0°, 60°, and 120°.

If a single sector is modeled, only joints on the symmetry planes need to be con-
strained.

Symmetry About a Point

Symmetry about a point is best described in terms of a spherical coordinate system
having its Z axis on the line of symmetry. The structure, loading, and displacements
are each said to be symmetric about a point if they do not vary with angular position
about the point, i.e., they are independent of the angular coordinates SB and SA.
Radial translation is the only displacement component that is permissible.

To enforce symmetry about a point using the Local Constraint:
* Model any spherical sector of the structure using any symmetric mesh of joints
and elements

* Assign each joint a local coordinate system such that local axes 1, 2, and 3 cor-
respond to the coordinate directions +SB, +SA, and +SR, respectively

* For each symmetric set of joints (i.e., having the same coordinate SR, but dif-
ferent coordinates SB and SA), define a Local Constraint using only degree of
freedom U3

» For all joints, restrain the degrees of freedom U1, U2, R1, R2, and R3

e Fully restrain any joints that lie at the point of symmetry
The corresponding constraint equations are:
u3j = usj
The numeric subscripts refer to the corresponding joint local coordinate systems.

It is also possible to define a case for symmetry about a point that is similar to cyclic
symmetry around a line, e.g., where each octant of the structure is identical.

Local Constraint
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Figure 12
Use of a Weld to Connect Separate Meshes at Coincident Joints

Welds

A Weld can be used to connect together different parts of the structural model that
were defined using separate meshes. A Weld is not a single Constraint, but rather is
a set of joints from which the program will automatically generate multiple Body
Constraints to connect together coincident joints.

Joints are considered to be coincident if the distance between them is less than or
equal to a tolerance, tol, that you specify. Setting the tolerance to zero is permissi-
ble but is not recommended.

One or more Welds may be defined, each with its own tolerance. Only the joints
within each Weld will be checked for coincidence with each other. In the most
common case, a single Weld is defined that contains all joints in the model; all coin-
cident groups of joints will be welded. However, in situations where structural dis-
continuity is desired, it may be necessary to prevent the welding of some coincident
joints. This may be facilitated by the use of multiple Welds.

Figure 12 (page 65) shows a model developed as two separate meshes, A and B.
Joints 121 through 125 are associated with mesh A, and Joints 221 through 225 are
associated with mesh B. Joints 121 through 125 share the same location in space as
Joints 221 through 225, respectively. These are the interfacing joints between the
two meshes. To connect these two meshes, a single Weld can be defined containing
all joints, or just joints 121 through 125 and 221 through 225. The program would
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generate five Body Constraints, each containing two joints, resulting in an
integrated model.

It is permissible to include the same joint in more than one Weld. This could result
in the joints in different Welds being constrained together if they are coincident
with the common joint. For example, suppose that Weld 1 contained joints 1,2, and
3, Weld 2 contained joints 3, 4, and 5. If joints 1, 3, and 5 were coincident, joints 1
and 3 would be constrained by Weld 1, and joints 3 and 5 would be constrained by
Weld 2. The program would create a single Body Constraint containing joints 1, 3,
and 5. One the other hand, if Weld 2 did not contain joint 3, the program would only
generate a Body Constraint containing joint 1 and 3 from Weld 1; joint 5 would not
be constrained.

For more information, see Topic “Body Constraint” (page 51) in this Chapter.

Automatic Master Joints

66

The program automatically creates an internal master joint for each explicit Con-
straint, and a master joint for each internal Body Constraint that is generated by a
Weld. Each master joint governs the behavior of the corresponding constrained
joints. The displacement at a constrained degree of freedom is computed as a linear
combination of the displacements of the master joint.

See Topic “Degrees of Freedom” (page 30) in Chapter “Joints and Degrees of Free-
dom” for more information.

Stiffness, Mass, and Loads

Joint local coordinate systems, springs, masses, and loads may all be applied to
constrained joints. Elements may also be connected to constrained joints. The joint
and element stiffnesses, masses and loads from the constrained degrees of freedom
are be automatically transferred to the master joint in a consistent fashion.

The translational stiffness at the master joint is the sum of the translational
stiffnesses at the constrained joints. The same is true for translational masses and
loads.

The rotational stiffness at a master joint is the sum of the rotational stiffnesses at the
constrained degrees of freedom, plus the second moment of the translational
stiffnesses at the constrained joints for the Body, Diaphragm, Plate, and Beam Con-
straints. The same is true for rotational masses and loads, except that only the first
moment of the translational loads is used. The moments of the translational
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stiffnesses, masses, and loads are taken about the center of mass of the constrained
joints. If the joints have no mass, the centroid is used.

Local Coordinate Systems

Each master joint has two local coordinate systems: one for the translational de-
grees of freedom, and one for the rotational degrees of freedom. The axes of each
local system are denoted 1, 2, and 3. For the Local Constraint, these axes corre-
spond to the local axes of the constrained joints. For other types of Constraints,
these axes are chosen to be the principal directions of the translational and rota-
tional masses of the master joint. Using the principal directions eliminates coupling
between the mass components in the master-joint local coordinate system.

For a Diaphragm or Plate Constraint, the local 3 axes of the master joint are always
normal to the plane of the Constraint. For a Beam or Rod Constraint, the local 1
axes of the master joint are always parallel to the axis of the Constraint.

Constraint Output

For each Body, Diaphragm, Plate, Rod, and Beam Constraint having more than two
constrained joints, the following information about the Constraint and its master
joint is printed in the output file:

* The translational and rotational local coordinate systems for the master joint

* The total mass and mass moments of inertia for the Constraint that have been
applied to the master joint

¢ The center of mass for each of the three translational masses

The degrees of freedom are indicated as U1, U2, U3, R1, R2, and R3. These are re-
ferred to the two local coordinate systems of the master joint.
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Material Properties

The Materials are used to define the mechanical, thermal, and density properties
used by the Frame, Cable, Tendon, Shell, Plane, Asolid, and Solid elements.

Basic Topics for All Users
* Overview
* Local Coordinate System
 Stresses and Strains
* Isotropic Materials
» Uniaxial Materials
* Mass Density
* Weight Density
* Design-Type Indicator

Advanced Topics
* Orthotropic Materials
* Anisotropic Materials

* Temperature-Dependent Materials
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* Element Material Temperature

* Material Damping

* Nonlinear Material Behavior

* Hysteresis Models

* Modified Darwin-Pecknold Concrete Model

* Time-dependent Properties

Overview

The Material properties may be defined as isotropic, orthotropic or anisotropic.
How the properties are actually utilized depends on the element type. Each Material
that you define may be used by more than one element or element type. For each el-
ement type, the Materials are referenced indirectly through the Section properties
appropriate for that element type.

All elastic material properties may be temperature dependent. Properties are given
at a series of specified temperatures. Properties at other temperatures are obtained
by linear interpolation.

For a given execution of the program, the properties used by an element are as-
sumed to be constant regardless of any temperature changes experienced by the
structure. Each element may be assigned a material temperature that determines
the material properties used for the analysis.

Time-dependent properties include creep, shrinkage, and age-dependent elasticity.
These properties can be activated during a staged-construction analysis, and form
the basis for subsequent analyses.

Nonlinear stress-strain curves may be defined for use with fiber hinges in frame el-
ements or nonlinear layers in shell elements.

Local Coordinate System

70

Each Material has its own Material local coordinate system used to define the
elastic and thermal properties. This system is significant only for orthotropic and
anisotropic materials. Isotropic materials are independent of any particular
coordinate system.

Overview
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Figure 13
Definition of Stress Components in the Material Local Coordinate System

The axes of the Material local coordinate system are denoted 1, 2, and 3. By default,
the Material coordinate system is aligned with the local coordinate system for each
element. However, you may specify a set of one or more material angles that rotate
the Material coordinate system with respect to the element system for those ele-
ments that permit orthotropic or anisotropic properties.

For more information:

* See Topic “Material Angle” (page 193) in Chapter “The Shell Element.”
* See Topic “Material Angle” (page 219) in Chapter “The Plane Element.”
* See Topic “Material Angle” (page 229) in Chapter “The Asolid Element.”
* See Topic “Material Angles” (page 246) in Chapter “The Solid Element.”

Stresses and Strains

The elastic mechanical properties relate the behavior of the stresses and strains
within the Material. The stresses are defined as forces per unit area acting on an ele-
mental cube aligned with the material axes as shown in Figure 13 (page 71). The
stresses G, G5y, and o33 are called the direct stresses and tend to cause length
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change, whilec |,,6 3, and 6 ,5 are called the shear stresses and tend to cause angle
change.

Not all stress components exist in every element type. For example, the stresses
G, 033, and 6,3 are assumed to be zero in the Frame element, and stress 6 33 is
taken to be zero in the Shell element.

The direct strains €11, € 55, and € 33 measure the change in length along the Material
local 1, 2, and 3 axes, respectively, and are defined as:

where u,, u,, and u, are the displacements and x,, x,, and x, are the coordinates in the
Material 1, 2, and 3 directions, respectively.

The engineering shear strains y;,, y13, and y 3, measure the change in angle in the
Material local 1-2, 1-3, and 2-3 planes, respectively, and are defined as:

dul dl/l2
Y2=——+——
dx, dx,
du du
Y13 =—L+=—=3
dX3 dxl
du du
Y=t
dX3 dX2

Note that the engineering shear strains are equal to twice the tensorial shear strains
€12,€13, and € 3, respectively.

Strains can also be caused by a temperature change, AT, that can be specified as a
load on an element. No stresses are caused by a temperature change unless the in-
duced thermal strains are restrained.

See Cook, Malkus, and Plesha (1989), or any textbook on elementary mechanics.

Stresses and Strains
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Isotropic Materials

The behavior of an isotropic material is independent of the direction of loading or
the orientation of the material. In addition, shearing behavior is uncoupled from
extensional behavior and is not affected by temperature change. Isotropic behavior
is usually assumed for steel and concrete, although this is not always the case.

The isotropic mechanical and thermal properties relate strain to stress and tempera-
ture change as follows:

1 -ul2 -ul2 0 0 0 (Eqn. 1)
el el el
£y Loz gy 0 (o) (at
el el 1
€ c a
22 11 0 0 0 22 )
€ c a
3| _ e . 3B, AT
Y12 —_— 0 0 (3D 0
gl2
Y13 1 613
Y23 sym. gl2 0 1 loss 0
na
L gl2 |

where el is Young’s modulus of elasticity, ul2 is Poisson’s ratio, g12 is the shear
modulus, and al is the coefficient of thermal expansion. This relationship holds re-
gardless of the orientation of the Material local 1, 2, and 3 axes.

The shear modulus is not directly specified, but instead is defined in terms of
Young’s modulus and Poisson’s ratio as:

el

gl2=— &
2(1+ul2)

Note that Young’s modulus must be positive, and Poisson’s ratio must satisfy the
condition:

-l<ul2< 1
2
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Uniaxial Materials

Uniaxial materials are used for modeling rebar, cable, and tendon behavior. These
types of objects primarily carry axial tension and have a preferred direction of ac-
tion. Shearing behavior may be considered in certain applications, such as for rebar
when used in layered shell sections.

Uniaxial behavior can be considered as an isotropic material with stresses
G4y =033 =0,3 =0, regardless of the strains. This relationship is directional and is
always aligned with the Material local 1 axis.

The uniaxial mechanical and thermal properties relate strain to stress and tempera-
ture change as follows:

1 -ul2 -ul2 0 0 0 (Eqn. 2)
el el el
e L2 0 [(oy) (al
el el 0 0
€
> 11 0 0 0], .
€
3B _ € 1 + AT
T12 o1 0 0 P 0
Y13 & 1 013 0
Y23 sym. az C (Lo Lo
1
L gl2

where el is Young’s modulus of elasticity, ul2 is Poisson’s ratio, g12 is the shear
modulus, and al is the coefficient of thermal expansion.

When used, the shear modulus is not directly specified, but instead is defined in
terms of Young’s modulus and Poisson’s ratio as:

el

gl2=— &
2(1+ul2)

Note that Young’s modulus must be positive, and Poisson’s ratio must satisfy the
condition:

—l<ul2< 1
2
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Orthotropic Materials

The behavior of an orthotropic material can be different in each of the three local
coordinate directions. However, like an isotropic material, shearing behavior is un-
coupled from extensional behavior and is not affected by temperature change.

The orthotropic mechanical and thermal properties relate strain to stress and tem-
perature change as follows:

1 -ul2 -ul3 0 0 0 (Eqn. 3)
el e2 e3
£y L3y 0 |(oy) (at
e2 e3 5
€ c a
22 i 0 0 0 22 X
€ (e} a
3| _ e3 | 3, AT
Y12 E 0 0 (3D} 0
Y13 5 1 o3 0
Y23 sym. gl3 0 1 loss 0
na
L g23 |

where el, e2, and e3 are the moduli of elasticity; ul2, ul3, and u23 are the Pois-
son’s ratios; gl12, g13, and g23 are the shear moduli; and al, a2, and a3 are the coef-
ficients of thermal expansion.

Note that the elastic moduli and the shear moduli must be positive. The Poisson’s
ratios may take on any values provided that the upper-left 3x3 portion of the stress-
strain matrix is positive-definite (i.e., has a positive determinant.)

Anisotropic Materials

The behavior of an anisotropic material can be different in each of the three local
coordinate directions. In addition, shearing behavior can be fully coupled with ex-
tensional behavior and can be affected by temperature change.

The anisotropic mechanical and thermal properties relate strain to stress and tem-
perature change as follows:
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(1 -ul2 -ul3 -ul4 -ul5 -ul6| (Eqn. 4)
el e2 e3 gl2 gl13 g23
1 -u23 -u24 -u25 -u26 1
& - a
2 2 e3 gl2 g3 g23 ||°0
€22 1 -u34 -u35 -u36 | |°2 a2
€33 e3 gl2 gl3 23 (|03 ad| -
Y12 1 -ud5 -ud6 | \g,, [ |al2
i3 gl2  gl3 23 |5 .| |aI3
sym. L -us6 c a23
Y23 g13 @23 23
L
i g23 |

where el, €2, and €3 are the moduli of elasticity; ul2, ul3, and u23 are the standard
Poisson’s ratios; ul4, u24..., uS6 are the shear and coupling Poisson’s ratios; g12,
g13, and g23 are the shear moduli; al, a2, and a3 are the coefficients of thermal ex-
pansion; and al2, al3, and a23 are the coefficients of thermal shear.

Note that the elastic moduli and the shear moduli must be positive. The Poisson’s
ratios must be chosen so that the 6x6 stress-strain matrix is positive definite. This
means that the determinant of the matrix must be positive.

These material properties can be evaluated directly from laboratory experiments.
Each column of the elasticity matrix represents the six measured strains due to the
application of the appropriate unit stress. The six thermal coefficients are the meas-
ured strains due to a unit temperature change.

Temperature-Dependent Properties
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All of the mechanical and thermal properties given in Equations (1) to (4) may de-
pend upon temperature. These properties are given at a series of specified material
temperatures t. Properties at other temperatures are obtained by linear interpolation
between the two nearest specified temperatures. Properties at temperatures outside
the specified range use the properties at the nearest specified temperature. See
Figure 14 (page 77) for examples.

If the Material properties are independent of temperature, you need only specify
them at a single, arbitrary temperature.

Temperature-Dependent Properties
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Determination of Property Emai at Temperature Tias from Function E(T)

Element Material Temperature

You can assign each element an element material temperature. This is the tem-
perature at which temperature-dependent material properties are evaluated for the
element. The properties at this fixed temperature are used for all analyses regard-
less of any temperature changes experienced by the element during loading.

The element material temperature may be uniform over an element or interpolated
from values given at the joints. In the latter case, a uniform material temperature is
used that is the average of the joint values. The default material temperature for any
element is zero.

The properties for a temperature-independent material are constant regardless of
the element material temperatures specified.

Mass Density

For each Material you may specify a mass density, m, that is used for calculating
the mass of the element. The total mass of the element is the product of the mass
density (mass per unit volume) and the volume of the element. This mass is appor-
tioned to each joint of the element. The same mass is applied along of the three
translational degrees of freedom. No rotational mass moments of inertia are com-
puted.
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Consistent mass units must be used. Typically the mass density is equal to the
weight density of the material divided by the acceleration due to gravity, but this is
not required.

The mass density property is independent of temperature.
For more information:

* See Topic “Mass” (page 134) in Chapter “The Frame Element.”

* See Topic “Mass” (page 172) in Chapter “The Cable Element.”

* See Topic “Mass” (page 206) in Chapter “The Shell Element.”

* See Topic “Mass” (page 220) in Chapter “The Plane Element.”

* See Topic “Mass” (page 232) in Chapter “The Asolid Element.”
* See Topic “Mass” (page 248) in Chapter “The Solid Element.”

» See Topic “Mass Source” (page 334) in Chapter “Load Patterns”.

Weight Density

For each Material you may specify a weight density, w, that is used for calculating
the self-weight of the element. The total weight of the element is the product of the
weight density (weight per unit volume) and the volume of the element. This
weight is apportioned to each joint of the element. Self-weight is activated using
Self-weight Load and Gravity Load.

The weight density property is independent of temperature.
For more information:

» See Topic “Self-Weight Load” (page 325) in Chapter “Load Patterns.”
» See Topic “Gravity Load” (page 326) in Chapter “Load Patterns.”

Material Damping

78

Y ou may specify material damping to be used in dynamic analyses. Different types
of damping are available for different types of Load Cases. Material damping is a
property of the material and affects all Load Cases of a given type in the same way.
You may specify additional damping in each Load Case.

Weight Density
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Because damping has such a significant affect upon dynamic response, you should
use care in defining your damping parameters.

The material used for calculating damping is determined for the different types of
elements as follows:

* For frame elements, if a material overwrite is specified, that material is used.
Otherwise the material for the current frame section is used, with non-prismatic
sections using a simple average of the damping coefficients over all materials
along the full length of the section.

* For shell elements, if a material overwrite is specified, that material is used.
Otherwise the material for the current shell section is used, with layered sec-
tions using a thickness-weighted average of the damping coefficients over all
material layers in the section.

* For cable, tendon, plane, asolid, and solid elements, the material for the current
section is used.

Material-based damping does not apply to link elements.

Modal Damping

The material modal damping available in SAP2000 is stiffness weighted, and is
also known as composite modal damping. It is used for all response-spectrum and
modal time-history analyses. For each material you may specify a material modal
damping ratio, , where 0 < r < 1. The damping ratio contributed to mode / by el-
ement j of this material is given by

T
”¢in¢1‘
Tk,

1

7rij7

where ¢; is mode shape for mode /, K ; is the stiffness matrix for element j, and K ;

is the modal stiffness for mode / given by

K; ZZ(I)I'TK_/(I)I'
J

summed over all elements, j, in the model.
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Viscous Proportional Damping

Viscous proportional damping is used for direct-integration time-history analyses.
For each material, you may specify a mass coefficient, c,,, and a stiffness coeffi-
cient, cg. You may specify these two coefficients directly, or they may be com-
puted by specifying equivalent fractions of critical modal damping at two different
periods or frequencies.

The damping matrix for element j of the material is computed as:

0
Ci=cyM; +cgK;

where M j is the mass of the element, andK(J)- is the stiffness of the element. The su-

perscript “0” indicates that for nonlinear elements, the initial stiffness is used. This
is the stiffness of the element at zero initial conditions, regardless of the current
nonlinear state of the element. The exception to this rule is that if the current nonlin-
ear state has zero stiffness and zero force or stress (such as for cracked concrete ma-
terial), then zero damping is assumed. In the case where the initial stiffness is dif-
ferent in the negative and positive direction of loading, the larger stiffness is used.

Hysteretic Proportional Damping

Hysteretic proportional damping is used for steady-state and power-spectral-den-
sity analyses. For each material, you may specify a mass coefficient, d ,,, and a
stiffness coefficient, d ;,. The hysteretic damping matrix for element ;j of the mate-
rial is computed as:

0

where M ; is the mass of the element, and K?- is the stiffness of the element. See the

subtopic “Viscous Proportional Damping” above for how the material stiffness is
determined for nonlinear elements.

Nonlinear Material Behavior

80

Nonlinear material behavior is available in certain elements using a directional ma-
terial model, in which uncoupled stress-strain behavior is modeled for one or more
stress-strain components. This is a simple and practical engineering model suitable
for many applications such as beams and columns, shear walls, bridge decks, tun-
nels, retaining walls, and others. You should carefully examine the applicability of
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this model before using it in a general continuum model where the governing
stresses change direction substantially from place to place.

In addition, a two-dimensional concrete model is available for use in the layered
shell. This model is discussed in topic “Modified Darwin-Pecknold Concrete
Model” later in this chapter. The remainder of this present topic concerns the direc-
tional material model.

Nonlinear material behavior is currently not temperature-dependent. The behavior
specified at the initial (most negative) temperature is used for all material tempera-
tures.

Tension and Compression

For each material you may specify an axial stress-strain curve that is used to repre-
sent the direct (tension-compression) stress-strain behavior of the material along
any material axis. For Uniaxial materials, this represents the relationship between
o1, ande ;. For Isotropic, Orthotropic, and Anisotropic materials, this curve repre-
sents the behavior along each of the three material axes, 61—, 0,—€15, and
G 33—€33. The nonlinear stress-strain behavior is the same in each direction, even

for Orthotropic, and Anisotropic materials.

Tension is always positive, regardless of the type of material (steel, concrete, etc.)
The tensile and compressive sides of the stress-strain behavior may be different
from each other. For what follows, the direct stress-strain curve may be written as
follows:

or(e;), €;=0 (Eqn. 5a)
oc(e;), €;<0

Gii(gii):{

where o (¢ ) represents tensile behavior, and ¢ - (¢) represents compressive behav-
ior, subject to the restrictions:

or(e)20, o7(0)=0 (Eqn. 5b)

Shear

A shear stress-strain curve is computed internally from the direct stress-strain
curve. The assumption is made that shearing behavior can be computed from ten-
sile and compressive behavior acting at 45° to the material axes using Mohr's circle
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in the plane. For an Isotropic, Orthotropic, or Anisotropic material, this results in
the following symmetrical relationship for shear:

G“(S“)_{ os(e;), €;20 (Eqn. 6a)
iy &)=

—og(—€;), €;<0
where

GS(Sij)zi(GT(Sij)_GC(_Sij))a € Z%'Yij 20, i#j (Eqn. 6b)

For the case where the direct stress-strain curve is symmetrical, such as for steel, we
have 6 7 (¢) = —o - (—¢), and therefore:

) or(e;), €;20
;(85)=7 <0
ccley), €5 <
To create a material where the shearing relationship, ¢ g (¢), is primary and known,
you can define a symmetrical direct stress-strain relationship such that:
or(e)=—o0c(-€)=205(c)

When shear stress is considered for a Uniaxial material, the stress is half that for an
Isotropic material. In this way, if you have two uniaxial materials at 90° to each
other, the shear behavior matches that of an Isotropic material. Thus for Uniaxial

materials:
oq(e;;), .. >0 Egn. 6
c,(e;)=1 s(€y) v (for Uniaxial material) (Ean. 62)
yroyso2 —GS(—Sij), £; <0
Hysteresis

Several hysteresis models are available to define the nonlinear stress-strain behav-
ior when load is reversed or cycled. For the most part, these models differ in the
amount of energy they dissipate in a given cycle of deformation, and how the en-
ergy dissipation behavior changes with an increasing amount of deformation.

Details are provided in Topic “Hysteresis Models" (page 85) in this chapter.
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Application

Nonlinear stress-strain curves are currently used in the two applications described
in the following.

Fiber Hinges

Fiber hinges are used to define the coupled axial force and bi-axial bending behav-
ior at locations along the length of a frame element. The hinges can be defined man-
ually, or created automatically for certain types of frame sections, including Sec-
tion-Designer sections.

For each fiber in the cross section at a fiber hinge, the material direct nonlinear
stress-strain curve is used to define the axial 6| - £ relationship. Summing up the
behavior of all the fibers at a cross section and multiplying by the hinge length
gives the axial force-deformation and biaxial moment-rotation relationships.

Theo; -€; is the same whether the material is Uniaxial, Isotropic, Orthotropic, or
Anisotropic. Shear behavior is not considered in the fibers. Instead, shear behavior
is computed for the frame section as usual using the linear shear modulus g12.

For more information:
* See Topic “Section Designer Sections” (page 134) in Chapter “The Frame Ele-
ment.”

* See Chapter “Frame Hinge Properties” (page 147).

Layered Shell Element

The Shell element with the layered section property may consider linear, nonlinear,
or mixed material behavior. For each layer, you select a material, a material angle,
and whether each of the in-plane stress-strain relationships are linear, nonlinear, or
inactive (zero stress). These relationships include 6 {{—¢€;,67 €55, andc,—€1,.

For Uniaxial materials, the stress 6,, =0 always. However, shear stiffness is as-
sumed to be present, but may be set to zero by setting the shear relationship to be in-
active.

For all materials, the transverse normal stress 6 33 =0. The transverse shear behav-
ior is always linear, using the appropriate shear moduli g13 and g23 from the mate-
rial matrix (Eqns. 1-4 above.)
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If all three in-plane relationships for a given layer are linear, the corresponding lin-
ear matrix is used (Eqns. 1-4 above), adjusted for the plane-stress condition
G 33 =0. Poisson effects are included, which may couple the two direct stresses.

If any of the in-plane relationships for a given layer are nonlinear or inactive, then
all three relationships become uncoupled according to these rules:
» Poisson’s ratio is taken to be zero.

* Linear direct stress-strain relationships use stiffness el from the material ma-
trix (Eqns. 1-4).

* Linear shear stress-strain relationships use shear modulus g12 (Eqns. 1-4).

» Nonlinear direct stress-strain relationships use Eqns. 5 above.

» Nonlinear shear stress-strain relationships use Eqns. 6 above.

 Inactive stress-strain relationships assume that the corresponding stress is zero.
The stress-strain behavior for a given layer is always defined in the material coordi-

nate system specified by the material angle for that layer. It is particularly impor-
tant to keep this in mind when using Uniaxial materials, for which ,, =0.

The above description is for the directional material. In addition, a two-dimen-
sional concrete model is available for use in the layered shell. This model is dis-
cussed in topic “Modified Darwin-Pecknold Concrete Model” later in this chapter.

For more information, see Subtopic “Layered Section Property” (page 193) in
Chapter “The Shell Element.”

Friction and Dilitational Angles

For concrete materials, you can specify a friction angle and a dilitational angle.
These should normally be set to zero. The friction angle is an experimental parame-
ter, and is not recommended for normal use. The dilitational angle is a future pa-
rameter, and has no effect on the model.

The friction angle, ¢, takes values 0 < ¢ < 90°. For the recommended value of ¢ =0,
shear behavior is as described above. For experimental use with ¢ >0, the shear
stress is computed primarily using a frictional model having linear stiffness g12 up
to a limiting stress given by:

0, o=0 (Eqn. 7a)
-o, o<0

012Stan¢{
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where o =%(c” +0 4, ). Compression is required in order to develop any shear
strength by this equation. In addition, cohesion is added using (Eqn. 6a) above, but

considering only the contribution to shear due to tension:

os(e1n)=5307(e12), €12 =371220 (Eqn. 7b)

This behavior, while interesting, can present computational challenges unless the
model is well defined and reasonably loaded, with sufficient ductility provided us-
ing reinforcing steel. To repeat: This is an experimental behavior and is not recom-
mended for normal use.

Hysteresis Models

Hysteresis is the process of energy dissipation through deformation (displace-
ment), as opposed to viscosity which is energy dissipation through deformation
rate (velocity). Hysteresis is typical of solids, whereas viscosity is typical of fluids,
although this distinction is not rigid.

Hysteretic behavior may affect nonlinear static and nonlinear time-history load
cases that exhibit load reversals and cyclic loading. Monotonic loading is not af-
fected.

Several different hysteresis models are available to describe the behavior of differ-
ent types of materials. For the most part, these differ in the amount of energy they
dissipate in a given cycle of deformation, and how the energy dissipation behavior
changes with an increasing amount of deformation.

Each hysteresis model may be used for the following purposes:

* Material stress-strain behavior, affecting frame fiber hinges and layered shells
that use the material

» Single degree-of-freedom frame hinges, such as M3 or P hinges. Interacting
hinges, such as P-M3 or P-M2-M3, currently use the isotropic model

» Link/support elements of type multi-linear plasticity.

Although the present chapter concerns material properties, this discussion pertains
equally to all three of these applications.
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Backbone Curve (Action vs. Deformation)

For each material, hinge, or link degree of freedom, a unaxial action vs. deforma-
tion curve defines the nonlinear behavior under monotonic loading in the positive
and negative directions.

Here action and deformation are an energy conjugate pair as follows:

For materials, stress vs. strain

For hinges and multi-linear links, force vs. deformation or moment vs. rotation,
depending upon the degree of freedom to which it is applied

For each model, the uniaxial action-deformation curve is given by a set of points
that you define. This curve is called the backbone curve, and it can take on almost
any shape, with the following restrictions:

One point must be the origin, (0,0)

At least one point with positive deformation, and one point with negative de-
formation, must be defined

The deformations of the specified points must increase monotonically, with no
two values being equal

The action at each point must have the same sign as the deformation (they can
be zero)

The slope given by the last two points specified on the positive deformation
axis is extrapolated to infinite positive deformation, or until it reaches zero
value. Similarly, the slope given by the last two points specified on the negative
deformation axis is extrapolated to infinite negative deformation, or until it
reaches zero value.

The given curve defines the action-deformation relationship under monotonic
loading. The first slope on either side of the origin is elastic; the remaining seg-
ments define plastic deformation. If the deformation reverses, it typically follows
the two elastic segments before beginning plastic deformation in the reverse direc-
tion, except as described below.

Cyclic Behavior

Several hysteresis models are available in SAP2000, ETABS, and CSiBridge. The
available models may vary from product to product, and may include any or all of
the models described below.

Hysteresis Models
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Elastic Hysteresis Model

Action

Deformation

Figure 15
Elastic Hysteresis Model under Increasing Cyclic Load — No Energy Dissipation
Showing the Backbone Curve Used for All Hysteresis Figures

Typical for all models, cyclic loading behaves as follows:

* Initial loading in the positive or negative direction follows the backbone curve

* Upon reversal of deformation, unloading occurs along a different path, usually
steeper than the loading path. This is often parallel or nearly parallel to the ini-
tial elastic slope.

o After the load level is reduced to zero, continued reversal of deformation
causes reverse loading along a path that eventually joins the backbone curve on
the opposite side, usually at a deformation equal to the maximum previous de-
formation in that direction or the opposite direction.

In the descriptions below of cyclic deformation, “loading” refers to increasing the
magnitude of deformation in a given positive or negative direction, and “unload-
ing” refers to subsequent reduction of the deformation until the force level reaches
zero. Continued reduction of the deformation is “reverse loading” until the defor-
mation reaches zero, after which the deformation increases again with the same
sign as the load and is “loading” again. Loading and unloading occur in the positive
(first and third) quadrants of the action-deformation plot, and reverse loading oc-
curs in the negative (second and fourth) quadrants.
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Kinematic Hysteresis Model

Action

Deformation

Figure 16
Kinematic Hysteresis Model under Increasing Cyclic Load

Elastic Hysteresis Model

The behavior is nonlinear but it is elastic. This means that the material always loads
and unloads along the backbone curve, and no energy is dissipated. This behavior is
illustrated in Figure 15 (page 87). This same backbone curve is used in the figures
for all subsequent models, except that the concrete model uses only the positive
portion of the curve, with the negative portion being defined separately.

Kinematic Hysteresis Model

This model is based upon kinematic hardening behavior that is commonly observed
in metals, and it is the default hysteresis model for all metal materials in the pro-
gram. This model dissipates a significant amount of energy, and is appropriate for
ductile materials.

Under the rules of kinematic hardening, plastic deformation in one direction
“pulls” the curve for the other direction along with it. Matching pairs of points are
linked. No additional parameters are required for this model.

Hysteresis Models
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Upon unloading and reverse loading, the curve follows a path made of segments
parallel to and of the same length as the previously loaded segments and their oppo-
site-direction counterparts until it rejoins the backbone curve when loading in the
opposite direction. This behavior is shown in Figure 16 (page 88) for cycles of in-
creasing deformation.

When you define the points on the multi-linear curve, you should be aware that
symmetrical pairs of points will be linked, even if the curve is not symmetrical.
This gives you some control over the shape of the hysteretic loop.

The kinematic model forms the basis for several of the other model described be-
low, including Takeda, degrading, and BRB hardening.

Degrading Hysteresis Model

This model is very similar to the Kinematic model, but uses a degrading hysteretic
loop that accounts for decreasing energy dissipation and unloading stiffness with
increasing plastic deformation.

Two measures are used for plastic deformation:

* Maximum plastic deformation in each the positive and negative directions

* Accumulated plastic deformation, which is the absolute sum of each increment
of positive or negative plastic deformation. Plastic deformation is that which
does not occur on the two elastic segments of the action-deformation curve

Accumulated plastic deformation can occur under cyclic loading of constant ampli-
tude, and can be used to represent fatigue.

For this model, the following parameters are required:

» Separately for positive and negative deformations

Initial energy factor at yield, f0, usually 1.0

— Energy factor at moderate deformation, f7

Energy factor at maximum deformation, f2

— Moderate deformation level, x/, as a multiple of the yield deformation

Maximum deformation level, x2, as a multiple of the yield deformation
— Accumulated deformation weighting factor, a
 Stiffness degradation weighting factor, s

» Larger-smaller weighting factor, w, usually 0.0
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Degrading Hysteresis Model (Elastic Degradation)

Action

Deformation

Figure 17
Degrading Hysteresis Model under Increasing Cyclic Load
Exhibiting Elastic Degradation (s = 0.0)

The energy factors represent the area of a degraded hysteresis loop divided by the
energy of the non-degraded loop, such as for the kinematic model. For example, an
energy factor of 0.3 means that a full cycle of deformation would only dissipate
30% of the energy that the non-degraded material would. The energy factors must
satisty 1.0 > f0>f1 > f2>0.0. The deformation levels must satisfy 1.0 <x/ <x2.

All weighting factors may take any value from 0.0 to 1.0, inclusive. Because the ac-
cumulated plastic deformation is constantly increasing, it is recommended that the
weighting factor a generally be small or zero.

For each increment of deformation:

* The absolute maximum positive and negative plastic deformations that have
occurred up to this point in the analysis are determined, d .y o5 A0d d 1oy 00 5
as well as the accumulated plastic deformation, d ..

* A positive plastic deformation level is calculated as

dpos = adacc + (1 - a)dmaxpos

where a is the accumulated weighting factor for positive deformation.
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Degrading Hysteresis Model (Stiffness Degradation)

Action

Deformation

Figure 18
Degrading Hysteresis Model under Increasing Cyclic Load
Exhibiting Stiffness Degradation (s = 1.0)

* Comparing d ,,; with the positive deformation levels d/ and d2, obtained by
multiplying x/ and x2 with the positive yield deformation, an energy factor
J/ pos can be determined by interpolation. If d ,,; > d2, then f i = f2.

* Following the same approach, the energy factor for negative deformation,
f neg» 18 computed using the corresponding parameters for negative deforma-
tion.

» The larger of these two energy factor is called f |, and the smaller is f ;.
The final energy factor is computed as

f :meax +(1 _W)fmin
In the most common case, w =0 and f = f ;, -

Degradation does not occur during monotonic loading. However, upon load rever-
sal, the curve for unloading and reverse loading is modified according to the energy
factor computed for the last deformation increment. This is done by squeezing, or
flattening, the curve toward the diagonal line that connects the two points of maxi-
mum positive and negative deformation.
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Degrading Hysteresis Model (0.5 Elastic + 0.5 Stiffness Degradation)

R

Action

Deformation

Figure 19
Degrading Hysteresis Model under Increasing Cyclic Load
Exhibiting Combined Degradation (s = 0.5)

This squeezing is scaled to achieve the desired decrease in energy dissipation. The
scaling can occur in two directions:

* Parallel to the elastic unloading line, called elastic degradation

 Parallel to the horizontal axis, called stiffness degradation
The amount of scaling in each direction is controlled by the stiffness degradation

weighting parameter, s. For s = 0.0, all degradation is of elastic type. For s = 1.0, all
degradation is of stiffness type. For intermediate values, the degradation is appor-

tioned accordingly.

While the deformation and individual energy levels are computed separately for the
positive and negative directions, the final energy level is a single parameter that af-

fects the shape of the hysteresis loop in both directions.
Note that if all the energy factors are equal to 1.0, this model degenerates to the ki-
nematic hysteresis model.

Figures 17, 18, and 19 (pages 90-92) show the shape of the hysteresis loop for elas-
tic degradation, stiffness degradation, and a mixture with a stiffness degradation
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Takeda Hysteresis Model

Action

Deformation

Figure 20
Takeda Hysteresis Model under Increasing Cyclic Load

factor of s = 0.5. Each of these three cases dissipates the same amount of energy for
a given cycle of loading, and less than the energy dissipated for the equivalent kine-

matic model shown in Figure 16 (page 88).

Takeda Hysteresis Model

This model is very similar to the kinematic model, but uses a degrading hysteretic
loop based on the Takeda model, as described in Takeda, Sozen, and Nielsen
(1970). This simple model requires no additional parameters, and is more appropri-
ate for reinforced concrete than for metals. Less energy is dissipated than for the ki-

nematic model.

Unloading is along the elastic segments similar to the kinematic model. When re-
loading, the curve follows a secant line to the backbone curve for loading in the op-
posite direction. The target point for this secant is at the maximum deformation that
occurred in that direction under previous load cycles. This results in a decreasing
amount of energy dissipation with larger deformations. Unloading is along the

elastic segments.

This behavior is illustrated in Figure 20 (page 93).
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Pivot Hysteresis Model
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Figure 21
Pivot Hysteresis Model under Increasing Cyclic Load

Pivot Hysteresis Model

This model is similar to the Takeda model, but has additional parameters to control
the degrading hysteretic loop. It is particularly well suited for reinforced concrete
members, and is based on the observation that unloading and reverse loading tend
to be directed toward specific points, called pivots points, in the action-deformation
plane. The most common use of this model is for moment-rotation. This model is
fully described in Dowell, Seible, and Wilson (1998). This model is not intended
for unreinforced concrete. See the separate concrete model below.

The following additional parameters are specified for the Pivot model:

* o, which locates the pivot point for unloading to zero from positive force. Un-
loading occurs toward a point on the extension of the positive elastic line, but at
a negative force value of o | times the positive yield force.

* a,, which locates the pivot point for unloading to zero from negative force.
Unloading occurs toward a point on the extension of the negative elastic line,
but at a positive force value of o, times the negative yield force.

* B, which locates the pivot point for reverse loading from zero toward positive
force. Reloading occurs toward a point on the positive elastic line at a force
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Figure 22
Pivot Hysteresis Model Parameters

value of B, times the positive yield force, where 0.0 <f3; < 1.0. Beyond that

point, loading occurs along the secant to the point of maximum previous posi-
tive deformation on the backbone curve.

* [3,, which locates the pivot point for reverse loading from zero toward negative
force. Reloading occurs toward a point on the negative elastic line at a force
value of 3, times the negative yield force, where 0.0 <3, < 1.0. Beyond that

point, loading occurs along the secant to the point of maximum previous nega-
tive deformation on the backbone curve.

* 1, which determines the amount of degradation of the elastic slopes after plastic
deformation, where 0.0 <n< 1.0

These parameters and the behavior are illustrated in Figures 21 and 22 (pages 94
and 95).

Concrete Hysteresis Model

This model is intended for unreinforced concrete and similar materials, and is the
default model for concrete and masonry materials in the program. Tension and
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Concrete Hysteresis Model (0.7 Energy Degradation)

Action

Deformation

Figure 23
Concrete Hysteresis Model under Increasing Cyclic Load
with Compression as Positive and Energy Factor f= 0.7

compression behavior are independent and behave differently. The force-deforma-
tion (stress-strain) curve is used to determine the sign of compression, which can be
positive or negative. The point having the largest absolute value of stress or force is
considered to be in compression, so that the sign of compression can be either posi-
tive or negative. Likewise, the concrete model can also be used to represent a ten-
sion-only material whose behavior is similar to concrete in compression.

This model is primarily intended for axial behavior, but can be applied to any de-
gree of freedom. Reinforced concrete is better modeled using the pivot, degrading,
or Takeda models.

A non-zero force-deformation curve should always be defined for compression.
The force-deformation curve for tension may be all zero, or it may be non-zero pro-
vided that the maximum force value is of smaller magnitude than that for the com-
pression side.

A single parameter, the energy degradation factor f; is specified for this model. This

value should satisfy 0.0 < < 1.0. A value of = 0.0 is equivalent to a clean gap
when unloading from compression and dissipates the least amount of energy. A
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value of /= 1.0 is dissipates the most energy and could be caused by rubble filling
the gap when unloading from compression.

Compression behavior is modeled as follows:

* Initial loading is along the backbone curve

* Unloading to zero occurs along a line nearly parallel to the compression elastic
line. The line is actually directed to a pivot point on the extension of the com-
pressive elastic line, located so that the unloading slope at maximum compres-
sive force has half the stiffness of the elastic loading line.

» At zero force, reverse loading toward tension occurs at zero force.

* Subsequent loading in compression occurs along the previous unloading line if
the energy factor = 0.0, and along the secant from the origin to the point of
maximum previous compressive deformation if the energy factor is 1.0. An in-
termediate secant from the horizontal axis is used for other values of f.

Tension behavior, if non-zero, is modeled as follows:

* Initial loading is along the backbone curve
* Unloading occurs along a secant line to the origin.
* Subsequent loading occurs along the unloading secant from the origin to the

point of maximum previous tensile deformation.

See Figure 23 (page 96) for an example of this behavior for an energy degradation
factor of f=0.7.

BRB Hardening Hysteresis Model

This model is similar to the kinematic model, but accounts for the increasing
strength with plastic deformation that is typical of bucking-restrained braces, caus-
ing the backbone curve, and hence the hysteresis loop, to progressively grow in
size. It is intended primarily for use with axial behavior, but can be applied to any
degree of freedom.

Two measures are used for plastic deformation:

* Maximum plastic deformation in each the positive and negative directions

* Accumulated plastic deformation, which is the absolute sum of each increment
of positive or negative plastic deformation. Plastic deformation is that which
does not occur on the two elastic segment of the force-deformation curve
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BRB Hardening Hysteresis Model
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Figure 24
BRB Hardening Hysteresis Model under Increasing Cyclic Load
with Hardening Factor h = 1.5

Accumulated plastic deformation can occur under cyclic loading of constant ampli-
tude.
For this model, the following parameters are required:
» Separately for tension (positive) and compression (negative) deformations
— Hardening factor at maximum deformation, 4, where 4 > 1.0.
— Maximum plastic deformation level at full hardening, x2, as a multiple of

yield deformation, where x2 > 1.0
— Maximum accumulated plastic deformation level at full hardening, x4, as a

multiple of yield deformation, where x4 > 1.0

— Accumulated deformation weighting factor, a, where 0.0 < a < 1.0.

The hardening factors scale the size of the backbone curve and hysteresis loop in
the action (stress/force/moment) direction. Because the accumulated plastic defor-
mation is constantly increasing, it is recommended that the weighting factor a gen-

erally be small or zero.

For each increment of deformation:
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* The absolute maximum positive and negative plastic deformations that have
occurred up to this point in the analysis are determined, d ., 05 a0d d 1oy e »
as well as the accumulated plastic deformation, d .

* Comparing d s s With the positive deformation level d2, obtained by multi-
plying x2 by the positive yield deformation, a hardening factor A, ,,,s can be
determined by interpolation. If d >d2, then h =h

max pos max pos
» Comparing d, . with the positive deformation level d4, obtained by multiply-
ing x4 by the positive yield deformation, a hardening factor 4 can be de-

acc pos
termined by interpolation. If d .. > d4, then & =h

acc pos

* The net hardening factor due to positive deformation, 4

acc

pos» 18 computed as

hpos = ahaccpos + (1 - a)hmaxpos

* Following the same approach, the hardening factor due to negative deforma-
tion, 4,,,, , is computed using the corresponding parameters for negative defor-
mation.

Degradation does not occur during monotonic loading. However, upon load rever-
sal, the curve for unloading and reverse loading in the opposite direction is modi-
fied according to the hardening factor computed for the last deformation increment.
This is done by scaling the action values in that direction, including the backbone
curve for further loading.

Important! Positive deformation and the corresponding hardening parameters only
affect the negative strength, and vice versa.

Note that if the hardening factor is equal to 1.0, this model degenerates to the kine-
matic hysteresis model.

This behavior is illustrated in Figure 24 (page 98).

Isotropic Hysteresis Model

This model is, in a sense, the opposite of the kinematic model. Plastic deformation
in one direction “pushes” the curve for the other direction away from it, so that both
directions increase in strength simultaneously. Unlike the BRB hardening model,
the backbone curve itself does not increase in strength, only the unloading and re-
verse loading behavior. Matching pairs of points are linked. No additional parame-
ters are required for this model.

Unloading and reverse loading occur along a path parallel to the elastic line until
the magnitude of the action in the reverse direction equals that of backbone curve at
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Figure 25
Isotropic Hysteresis Model under Increasing Cyclic Load

the same amount of deformation in the reverse direction, and then continues along a
horizontal secant to the backbone curve.

When you define the points on the multi-linear curve, you should be aware that
symmetrical pairs of points will be linked, even if the curve is not symmetrical.
This gives you some control over the shape of the hysteretic loop.

This model dissipates the most energy of all the models. This behavior is illustrated
in Figure 25 (page 100).

Modified Darwin-Pecknold Concrete Model

100

A two-dimensional nonlinear concrete material model is available for use in the
layered shell. This model is based on the Darwin-Pecknold model, with consider-
ation of Vecchio-Collins behavior. This model represents the concrete compres-
sion, cracking, and shear behavior under both monotonic and cyclic loading, and
considers the stress-strain components G 1;—€ 11, G 7, —€ 25, and 6 33— 33. A state of

plane stress is assumed.
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The direction of cracking can change during the loading history, and the shear
strength is affected by the tension strain in the material. The axial stress-strain
stress-strain curve specified for the material is simplified to account for initial stiff-
ness, yielding, ultimate plateau, and strength loss due to crushing. Zero tensile
strength is assumed.

Hysteresis is governed by the concrete hysteresis model described in the previous
topic, with the energy dissipation factor f= 0.

The layered shell allows this material to be used for membrane and/or flexural be-
havior and to be combined with steel reinforcement placed in arbitrary directions
and locations. Transverse (out-of-plane) shear is assumed to be elastic and isotropic
using the shear stiffness G5 for both 3—y;3 and 6 ,3—y,3 behavior.

See separate Technical Note “Modified Darwin-Pecknold 2-D Reinforced Con-
crete Material Model” for more information, available using the command Help >
Documentation.

Time-dependent Properties

For any material having a design type of concrete or tendon, you may specify time
dependent material properties that are used for creep, shrinkage, and aging effects
during a staged-construction analysis.

For more information, see Topic “Staged Construction” (page 439) in Chapter
“Nonlinear Static Analysis.”

Properties
For concrete-type materials, you may specify:

» Aging parameters that determine the change in modulus of elasticity with age

» Shrinkage parameters that determine the decrease in direct strains with time

* Creep parameters that determine the change in strain with time under the action
of stress

For tendon-type materials, relaxation behavior may be specified that determines
the change in strain with time under the action of stress, similar to creep.

Currently these behaviors can be specified for the CEB-FIP 1990 code (Comite
Euro-International Du Beton, 1993) for concrete and tendon materials, and for con-

Time-dependent Properties (]|
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crete materials using the following codes: CEB-FIP 2010, ACI 290R-92, and
user-specified curves.

Time-Integration Control

For each material, you have the option to model the creep behavior by full integra-
tion or by using a Dirichlet series approximation.

With full integration, each increment of stress during the analysis becomes part of
the memory of the material. This leads to accurate results, but for long analyses
with many stress increments, this requires computer storage and execution time
that both increase as the square of the number of increments. For larger problems,
this can make solution impractical.

Using the Dirichlet series approximation (Ketchum, 1986), you can choose a fixed
number of series terms that are to be stored. Each term is modified by the stress in-
crements, but the number of terms does not change during the analysis. This means
the storage and execution time increase linearly with the number of stress incre-
ments. Each term in the Dirichlet series can be thought of as a spring and dashpot
system with a characteristic relaxation time. The program automatically chooses
these spring-dashpot systems based on the number of terms you request. You
should try different numbers of terms and check the analysis results to make sure
that your choice is adequate.

It is recommended that you work with a smaller problem that is representative of
your larger model, and compare various numbers of series terms with the full inte-
gration solution to determine the appropriate series approximation to use.

Design-Type
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You may specify a design-type for each Material that indicates how it is to be
treated for design by the SAP2000, ETABS, SAFE, or CSiBridge graphical user in-
terface. The available design types are:

» Steel: Frame elements made of this material will be designed according to steel
design codes

* Concrete: Frame elements made of this material will be designed according to
concrete design codes

* Aluminum: Frame elements made of this material will be designed according
to aluminum design codes

Design-Type
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* Cold-formed: Frame elements made of this material will be designed according
to cold-formed steel design codes

* None: Frame elements made of this material will not be designed

When you choose a design type, additional material properties may be specified
that are used only for design; they do not affect the analysis. Consult the on-line
help and design documentation for further information on these design properties.

Design-Type 103



CSI Analysis Reference Manual

104 Design-Type



Chapter VI

The Frame Element

The Frame element is a very powerful element that can be used to model beams,
columns, braces, and trusses in planar and three-dimensional structures. Nonlinear
material behavior is available through the use of Frame Hinges.

Basic Topics for All Users
* Overview
 Joint Connectivity
* Degrees of Freedom
* Local Coordinate System
» Section Properties
* Insertion Point
* End Offsets
* End Releases
* Mass
» Self-Weight Load
» Concentrated Span Load
* Distributed Span Load
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Internal Force Output

Stress Output

Advanced Topics

Advanced Local Coordinate System
Property Modifiers

Nonlinear Properties

Gravity Load

Temperature Load

Strain and Deformation Load

Target-Force Load

Overview

106

The Frame element uses a general, three-dimensional, beam-column formulation
which includes the effects of biaxial bending, torsion, axial deformation, and biax-
ial shear deformations. See Bathe and Wilson (1976).

Structures that can be modeled with this element include:

Three-dimensional frames
Three-dimensional trusses
Planar frames

Planar grillages

Planar trusses

Cables

A Frame element is modeled as a straight line connecting two points. In the graphi-
cal user interface, you can divide curved objects into multiple straight objects, sub-
ject to your specification.

Each element has its own local coordinate system for defining section properties
and loads, and for interpreting output.

The element may be prismatic or non-prismatic. The non-prismatic formulation al-
lows the element length to be divided into any number of segments over which
properties may vary. The variation of the bending stiffness may be linear, para-
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bolic, or cubic over each segment of length. The axial, shear, torsional, mass, and
weight properties all vary linearly over each segment.

Insertion points and end offsets are available to account for the finite size of beam
and column intersections. The end offsets may be made partially or fully rigid to
model the stiffening effect that can occur when the ends of an element are embed-
ded in beam and column intersections. End releases are also available to model dif-
ferent fixity conditions at the ends of the element.

Each Frame element may be loaded by gravity (in any direction), multiple concen-
trated loads, multiple distributed loads, strain and deformation loads, and loads due
to temperature change.

Target-force loading is available that iteratively applies deformation load to the el-
ement to achieve a desired axial force.

Element internal forces are produced at the ends of each element and at a user-
specified number of equally-spaced output stations along the length of the element.

Cable behavior is usually best modeled using the catenary Cable element (page
165). However, there are certain cases where using Frame elements is necessary.
This can be achieved by adding appropriate features to a Frame element. You can
release the moments at the ends of the elements, although we recommend that you
retain small, realistic bending stiffness instead. You can also add nonlinear behav-
ior as needed, such as the no-compression property, tension stiffening (p-delta ef-
fects), and large deflections. These features require nonlinear analysis.

Joint Connectivity

A Frame element is represented by a straight line connecting two joints, I and j, un-
less modified by insertion points as described below. The two joints must not share
the same location in space. The two ends of the element are denoted End I and End
J, respectively.

Insertion Points

Sometimes the neutral axis of the element cannot be conveniently located by joints
that connect to other elements in the structure. You have the option to specify in-
sertion points that locate the element with respect to the joints. The insertion
points consists of a cardinal point specified for the section, plus independent joint
offsets specified at each end of the element. By default the cardinal point is the cen-
troid of the section and the joints offsets are zero.
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The two ends of the neutral axis, considering the coordinates of joints I and j plus
the insertion points, must not be coincident. It is generally recommended that the
offsets due to the insertion points be perpendicular to the axis of the element, al-
though this is not required.

For more information on the insertion points, including how they affect the local
coordinate system of the element, see Topic “Insertion Points” (page 125).

Degrees of Freedom

The Frame element activates all six degrees of freedom at both of its connected
joints. If you want to model truss or cable elements that do not transmit moments at
the ends, you may either:

* Set the geometric Section properties j, i33, and i22 all to zero (a is non-zero;
as2 and as3 are arbitrary), or
» Release both bending rotations, R2 and R3, at both ends and release the tor-

sional rotation, R1, at either end

In either case, the joint offsets and the end offsets must both be zero to avoid mo-
ments at the ends.

For more information:

» See Topic “Degrees of Freedom” (page 30) in Chapter “Joints and Degrees of
Freedom.”

* See Topic “Section Properties” (page 114) in this Chapter.

* See Topic “End Offsets” (page 127) in this Chapter.

» See Topic “End Releases” (page 131) in this Chapter.

Local Coordinate System

108

Each Frame element has its own element local coordinate system used to define
section properties, loads and output. The axes of this local system are denoted 1, 2
and 3. The first axis is directed along the length of the element at its centroid; the re-
maining two axes lie in the plane perpendicular to the element with an orientation
that you specify.

It is important that you clearly understand the definition of the element local 1-2-3
coordinate system and its relationship to the global X-Y-Z coordinate system. Both

Degrees of Freedom
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systems are right-handed coordinate systems. It is up to you to define local systems
which simplify data input and interpretation of results.

In most structures the definition of the element local coordinate system is ex-
tremely simple. The methods provided, however, provide sufficient power and
flexibility to describe the orientation of Frame elements in the most complicated
situations.

Local axes are first computed for the element without considering the insertion
points, i.e., as if the neutral axis connects the two joints. These are called the nomi-
nal local axes. If the insertion points shift the neutral axis by a different amount at
the two ends, the local axes are then transformed by projecting them onto the neu-
tral axis to determine the actual local coordinate system used for analysis.

The discussion below considers the calculation of the nominal local axes using the
joints. The transformation for the insertion points, if needed, is discussed later in
Topic “Insertion Points”.

The simplest method for computing the element local coordinate system, using the
default orientation and the Frame element coordinate angle, is described in this
topic. Additional methods for defining the Frame element local coordinate system
are described in the next topic.

For more information:

* See Chapter “Coordinate Systems” (page 11) for a description of the concepts
and terminology used in this topic.

» See Topic “Advanced Local Coordinate System” (page 110) in this Chapter.
* See Topic “Insertion Points” (page 125) in this Chapter.

Longitudinal Axis |

The local axis 1 is always the longitudinal axis of the element, the positive direction
being directed from End I to End J. This axis is always located at the centroid of the
cross section, and connects joint I to joint j.

Default Orientation

The default orientation of the local 2 and 3 axes is determined by the relationship
between the local 1 axis and the global Z axis. The local 1 axis is directed along the
line between the joints I and j without considering any offsets:

* The local 1-2 plane is taken to be vertical, i.e., parallel to the Z axis
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* The local 2 axis is taken to have an upward (+Z) sense unless the element is ver-
tical, in which case the local 2 axis is taken to be horizontal along the global +X
direction

» The local 3 axis is horizontal, i.e., it lies in the X-Y plane

An element is considered to be vertical if the sine of the angle between the local 1
axis and the Z axis is less than 10°.

The local 2 axis makes the same angle with the vertical axis as the local 1 axis
makes with the horizontal plane. This means that the local 2 axis points vertically
upward for horizontal elements.

Coordinate Angle

The Frame element coordinate angle, ang, is used to define element orientations
that are different from the default orientation. It is the angle through which the local
2 and 3 axes are rotated about the positive local 1 axis from the default orientation.
The rotation for a positive value of ang appears counterclockwise when the local
+1 axis is pointing toward you.

For vertical elements, ang is the angle between the local 2 axis and the horizontal
+X axis. Otherwise, ang is the angle between the local 2 axis and the vertical plane
containing the local 1 axis. See Figure 26 (page 111) for examples.

Advanced Local Coordinate System

10

By default, the element local coordinate system is defined using the element coor-
dinate angle measured with respect to the global +Z and +X directions, as described
in the previous topic. In certain modeling situations it may be useful to have more
control over the specification of the local coordinate system.

This topic describes how to define the orientation of the transverse local 2 and 3
axes with respect to an arbitrary reference vector when the element coordinate an-
gle, ang, is zero. If ang is different from zero, it is the angle through which the local
2 and 3 axes are rotated about the positive local 1 axis from the orientation deter-
mined by the reference vector. The local 1 axis is always directed from end I to end
J of the element.

The discussion below considers the calculation of the nominal local axes using the
joints. The transformation for the insertion points, if needed, is discussed later in
Topic “Insertion Points”.

Advanced Local Coordinate System
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ang=30°

X Y
Local 1 Axis is Parallel to +Y Axis Local 1 Axis is Not Parallel to X, Y, or Z Axes
Local 2 Axis is Rotated 90° from Z-1 Plane Local 2 Axis is Rotated 30° from Z-1 Plane

ang=90°
Local 1 Axis is Parallel to +Z Axis Local 1 Axis is Parallel to —Z Axis
Local 2 Axis is Rotated 90° from X-1 Plane Local 2 Axis is Rotated 30° from X-1 Plane

Figure 26
The Frame Element Coordinate Angle with Respect to the Default Orientation

For more information:

* See Chapter “Coordinate Systems” (page 11) for a description of the concepts
and terminology used in this topic.

Advanced Local Coordinate System i
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* See Topic “Local Coordinate System” (page 108) in this Chapter.
* See Topic “Insertion Points” (page 125) in this Chapter.

Reference Vector

To define the transverse local axes 2 and 3, you specify a reference vector that is
parallel to the desired 1-2 or 1-3 plane. The reference vector must have a positive
projection upon the corresponding transverse local axis (2 or 3, respectively). This
means that the positive direction of the reference vector must make an angle of less

than 90° with the positive direction of the desired transverse axis.
To define the reference vector, you must first specify or use the default values for:

e A primary coordinate direction pldirp (the default is +7)

* A secondary coordinate direction pldirs (the default is +X). Directions pldirs
and pldirp should not be parallel to each other unless you are sure that they are
not parallel to local axis 1

* A fixed coordinate system csys (the default is zero, indicating the global coor-
dinate system)

* The local plane, local, to be determined by the reference vector (the default is
12, indicating plane 1-2)

You may optionally specify:

* A pair of joints, plveca and plvecb (the default for each is zero, indicating the
center of the element). If both are zero, this option is not used

For each element, the reference vector is determined as follows:

1. A vector is found from joint plveca to joint plvecb. If this vector is of finite
length and is not parallel to local axis 1, it is used as the reference vector V,,

2. Otherwise, the primary coordinate direction pldirp is evaluated at the center of
the element in fixed coordinate system esys. If this direction is not parallel to
local axis 1, it is used as the reference vector Vp

3. Otherwise, the secondary coordinate direction pldirs is evaluated at the center
of the element in fixed coordinate system csys. If this direction is not parallel to
local axis 1, it is used as the reference vector Vp

4. Otherwise, the method fails and the analysis terminates. This will never happen
if pldirp is not parallel to pldirs

12 Advanced Local Coordinate System
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YA
pldirp = +Y

pldirs = -X 1
local = 12

z ang=90° \(P\\\X

A3
2

Local 1 Axis is Not Parallel to pldirp (+Y) Local 1 Axis is Parallel to pldirp (+Y)
Local 2 Axis is Rotated 90° from Y-1 Plane Local 2 Axis is Rotated 90° from X-1 Plane

Figure 27
The Frame Element Coordinate Angle with Respect to Coordinate Directions

A vector is considered to be parallel to local axis 1 if the sine of the angle between
them is less than 10~

The use of the Frame element coordinate angle in conjunction with coordinate di-
rections that define the reference vector is illustrated in Figure 27 (page 113). The
use of joints to define the reference vector is shown in Figure 28 (page 114).

Determining Transverse Axes 2 and 3

The program uses vector cross products to determine the transverse axes 2 and 3
once the reference vector has been specified. The three axes are represented by the
three unit vectors V|, V, and V3, respectively. The vectors satisfy the cross-product
relationship:

Vl = Vz X V3
The transverse axes 2 and 3 are defined as follows:

 If the reference vector is parallel to the 1-2 plane, then:
V3=V, xV, and
V2 = V3 X Vl
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The following two specifications are equivalent: Plane 1-2 Vp (a)
(a) local=12, plveca=0, plvecb=100
(b) local=13, plveca=101, plvecb=102

Axis 1

<V

Figure 28
Using Joints to Define the Frame Element Local Coordinate System

» If the reference vector is parallel to the 1-3 plane, then:
V, =V, xV, and
V3 = Vl X V2

In the common case where the reference vector is perpendicular to axis Vj, the
transverse axis in the selected plane will be equal to V.

Section Properties

A Frame Section is a set of material and geometric properties that describe the
cross-section of one or more Frame elements. Sections are defined independently
of the Frame elements, and are assigned to the elements.

Section properties are of two basic types:

* Prismatic — all properties are constant along the full element length

* Non-prismatic — the properties may vary along the element length
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Non-prismatic Sections are defined by referring to two or more previously defined
prismatic Sections.

All of the following subtopics, except the last, describe the definition of prismatic
Sections. The last subtopic, “Non-prismatic Sections”, describes how prismatic
Sections are used to define non-prismatic Sections.

Local Coordinate System

Section properties are defined with respect to the local coordinate system of a
Frame element as follows:

* The 1 direction is along the axis of the element. It is normal to the Section and
goes through the intersection of the two neutral axes of the Section.

* The 2 and 3 directions are parallel to the neutral axes of the Section. Usually the
2 direction is taken along the major dimension (depth) of the Section, and the 3
direction along its minor dimension (width), but this is not required.

See Topic “Local Coordinate System” (page 108) in this Chapter for more informa-
tion.

Material Properties

The material properties for the Section are specified by reference to a previously-
defined Material. Isotropic material properties are used, even if the Material se-
lected was defined as orthotropic or anisotropic. The material properties used by
the Section are:

* The modulus of elasticity, el, for axial stiffness and bending stiffness

* The shear modulus, g12, for torsional stiffness and transverse shear stiffness

* The coefficient of thermal expansion, al, for axial expansion and thermal
bending strain

* The mass density, m, for computing element mass

* The weight density, w, for computing Self-Weight and Gravity Loads

The material properties el, g12, and al are all obtained at the material temperature
of'each individual Frame element, and hence may not be unique for a given Section.

See Chapter “Material Properties” (page 69) for more information.
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Geometric Properties and Section Stiffnesses

Six basic geometric properties are used, together with the material properties, to
generate the stiffnesses of the Section. These are:

The cross-sectional area, a. The axial stiffness of the Section is given by a -el;

The moment of inertia, i33, about the 3 axis for bending in the 1-2 plane, and
the moment of inertia, i22, about the 2 axis for bending in the 1-3 plane. The
corresponding bending stiffnesses of the Section are given by i33-el and
i22 -el;

The torsional constant, j. The torsional stiffness of the Section is given by
j-g12. Note that the torsional constant is not the same as the polar moment of
inertia, except for circular shapes. See Roark and Young (1975) or Cook and
Young (1985) for more information.

The shear areas, as2 and as3, for transverse shear in the 1-2 and 1-3 planes, re-
spectively. The corresponding transverse shear stiffnesses of the Section are
given by as2-g12 and as3 -g12. Formulae for calculating the shear areas of
typical sections are given in Figure 29 (page 117).

Setting a, j, 133, or i22 to zero causes the corresponding section stiffness to be zero.
For example, a truss member can be modeled by setting j = i33 =i22 =0, and a pla-
nar frame member in the 1-2 plane can be modeled by setting j =i22 = 0.

Setting as2 or as3 to zero causes the corresponding transverse shear deformation to
be zero. In effect, a zero shear area is interpreted as being infinite. The transverse
shear stiffness is ignored if the corresponding bending stiffness is zero.

Shape Type

For each Section, the six geometric properties (a, j, i33, i22, as2 and as3) may be
specified directly, computed from specified Section dimensions, or read from a
specified property database file. This is determined by the shape type, shape, speci-
fied by the user:

If shape=GENERAL (general section), the six geometric properties must be
explicitly specified

If shape=RECTANGLE, PIPE, BOX/TUBE, /WIDE FLANGE, or one of
several others offered by the program, the six geometric properties are auto-
matically calculated from specified Section dimensions as described in “Auto-
matic Section Property Calculation” below, or obtained from a specified prop-
erty database file. See “Section Property Database Files” below.
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ShearForces parallelto
d-direction

Section Description Effective
ShearArea
¢ RectangularSection 5
. E ShearForces paralleltothe bord /6 bd
l directions
koo
fqﬂ%” | |
] Wide Flange Section 5/3 e by
irf ShearForces parallelto flange
kool f
[ ) )
Wide Flange Section t g
—> w
! ShearForces paralleltoweb
W
ThinWalled (0.9-0.45)A
—» Circular Tube Section where
t Shear Forces from any direction s=(r-)/r
A=m(2r-1)t
Solid Circular Section )
- Shear Forces from any direction 0.9mr
o ThinWalled
. D Rectangular Tube Section 914

General Section
ShearForces parallelto
Y-direction
| x=moment of inertia of
section about X-X
Vi

QY)= /n b(n)dn
y

Figure 29
Shear Area Formulae

\a
2
fQMw
v, oW

» If shape=SD SECTION (Section Designer Section), you can create your own
arbitrary Sections using the Section Designer utility within the program, and
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the six geometric properties are automatically calculated. See “Section De-
signer Sections” below.

* Ifshape=NONPRISMATIC, the Section is interpolated along the length of the
element from previously defined Sections as described in “Nonprismatic Sec-
tion” below.

Automatic Section Property Calculation

The six geometric Section properties can be automatically calculated from speci-
fied dimensions for the simple shapes shown in Figure 30 (page 119), and for others
offered by the program. The required dimensions for each shape are shown in the
figure.

Note that the dimension t3 is the depth of the Section in the 2 direction and contrib-
utes primarily to i33.

Section Property Database Files

Geometric Section properties may be obtained from one or more Section property
database files. Several database files are currently supplied with SAP2000,
ETABS, or CSiBridge that provide properties for different regions, codes, and
manufacturers. Their format and content may be different for each product. Addi-
tional property database files may created by the user or may be available from
other sources.

The geometric properties are stored in the length units specified when the database
file was created. These are automatically converted to the appropriate units when
used in a model. Different frame sections can be obtained from different database
files for the same model.

Section-Designer Sections

Section Designer is a separate utility built into SAP2000, ETABS, and CSiBridge
that can be used to create your own frame section properties. You can build sections
of arbitrary geometry and combinations of materials. The basic analysis geometric
properties (areas, moments of inertia, and torsional constant) are computed and
used for analysis. In addition, Section Designer can compute nonlinear frame hinge
properties.

For more information, see the on-line help within Section Designer.
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Figure 30
Automatic Section Property Calculation
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Additional Mass and Weight

You may specify mass and/or weight for a Section that acts in addition to the mass
and weight of the material. The additional mass and weight are specified per unit of
length using the parameters mpl and wpl, respectively. They could be used, for ex-
ample, to represent the effects of nonstructural material that is attached to a Frame
element.

The additional mass and weight act regardless of the cross-sectional area of the
Section. The default values for mpl and wpl are zero for all shape types.

Non-prismatic Sections

Non-prismatic Sections may be defined for which the properties vary along the ele-
ment length. You may specify that the element length be divided into any number
of segments; these do not need to be of equal length. Most common situations can
be modeled using from one to five segments.

The variation of the bending stiffnesses may be linear, parabolic, or cubic over each
segment of length. The axial, shear, torsional, mass, and weight properties all vary
linearly over each segment. Section properties may change discontinuously from
one segment to the next.

See Figure 31 (page 122) for examples of non-prismatic Sections.

Segment Lengths

The length of a non-prismatic segment may be specified as either a variable length,
vl, or an absolute length, 1. The default is vl= 1.

When a non-prismatic Section is assigned to an element, the actual lengths of each
segment for that element are determined as follows:

* The clear length of the element, L, is first calculated as the total length minus
the end offsets:
L. =L—(ioff + joff )
See Topic “End Offsets” (page 127) in this Chapter for more information.

 Ifthe sum of the absolute lengths of the segments exceeds the clear length, they
are scaled down proportionately so that the sum equals the clear length. Other-
wise the absolute lengths are used as specified.

* The remaining length (the clear length minus the sum of the absolute lengths) is
divided among the segments having variable lengths in the same proportion as

Section Properties
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the specified lengths. For example, for two segments with vl=1 and vl=2, one
third of the remaining length would go to the first segment, and two thirds to
the second segment.

Starting and Ending Sections
The properties for a segment are defined by specifying:

» The label, seci, of a previously defined prismatic Section that defines the prop-
erties at the start of the segment, i.e., at the end closest to joint I.

* The label, secj, of a previously defined prismatic Section that defines the prop-
erties at the end of the segment, i.e., at the end closest to joint j. The starting and
ending Sections may be the same if the properties are constant over the length
of the segment.

The Material would normally be the same for both the starting and ending Sections
and only the geometric properties would differ, but this is not required.

Variation of Properties

Non-prismatic Section properties are interpolated along the length of each segment
from the values at the two ends.

The variation of the bending stiffnesses, i33-el and i22-el, are defined by specify-
ing the parameters eivar33 and eivar22, respectively. Assign values of 1,2, or 3 to
these parameters to indicate variation along the length that is linear, parabolic, or
cubic, respectively.

Specifically, the eivar33-th root of the bending stiffness in the 1-2 plane:
eivar33 i33 -el

varies linearly along the length. This usually corresponds to a linear variation in
one of the Section dimensions. For example, referring to Figure 30 (page 119): a
linear variation in t2 for the rectangular shape would require eivar33=1, a linear
variation in t3 for the rectangular shape would require eivar33=3, and a linear
variation in t3 for the I-shape would require eivar33=2.

The interpolation of the bending stiffness in the 1-2 plane, i22 -el, is defined in the
same manner by the parameter eivar22.

The remaining properties are assumed to vary linearly between the ends of each
segment:
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Figure 31

Examples of Non-prismatic Sections

» Stiffnesses: a-el, j-gl12, as2-g12, and as3 -g12

e Mass: a-m + mpl
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* Weight: a-w + wpl

If a shear area is zero at either end, it is taken to be zero along the full segment, thus
eliminating all shear deformation in the corresponding bending plane for that seg-
ment.

Advanced Location Parameters

Normally the full variation of a non-prismatic section occurs over the length of a
single frame object. When the object is auto-meshed into multiple frame elements,
each element will represent a portion of the full non-prismatic length.

Similarly, if you explicitly divide a non-prismatic frame object into multiple frame
objects, it is necessary to specify for each frame object what portion of the total
nonprismatic variation applies to each object. This is done by assigning to each ob-
ject:

* The length of the total non-prismatic section. This will be the same for each ob-
ject derived from a single parent frame object, and will be longer than each de-
rived object.

* The relative location

For example, consider a single non-prismatic frame object of length 8 meters, di-
vided into four equal-length objects. For each derived object, the assigned
non-prismatic length should be 8 meters and the relative starting locations should
be 0.0, 0.25, 0.5, and 0.75, respectively.

Effect upon End Offsets

Properties vary only along the clear length of the element. Section properties within
end offset ioff are constant using the starting Section of the first segment. Section
properties within end offset joff are constant using the ending Section of the last
segment.

See Topic “End Offsets” (page 127) in this Chapter for more information.

Property Modifiers

You may specify scale factors to modify the computed section properties. These
may be used, for example, to account for cracking of concrete or for other factors
not easily described in the geometry and material property values. Individual
modifiers are available for the following eight terms:
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* The axial stiffness a -el

» The shear stiffnesses as2 -g12 and as3 -g12
* The torsional stiffness j-g12

* The bending stiffnesses i33 -el and i22 -el
* The section mass a-m + mpl

* The section weight a-w + wpl
You may specify multiplicative factors in two places:

* As part of the definition of the section property

* As an assignment to individual elements.

If modifiers are assigned to an element and also to the section property used by that
element, then both sets of factors multiply the section properties. Modifiers cannot
be assigned directly to a nonprismatic section property, but any modifiers applied
to the sections contributing to the nonprismatic section are used.

When performing steel frame design using the Direct Analysis Method of design
code AISC 360-05/IBC2006, further property modifiers may be computed by the
design algorithm for the axial and bending stiffnesses. In this case, the computed
modifiers are multiplied by those assigned to the element and those specified in the
section property used by that element, so that all three sets of factors apply.

Named Property Sets

In addition to directly assigning property modifiers to frame elements, you can ap-
ply them to a frame element in a staged-construction Load Case using a Named
Property Set of Frame Property Modifiers. A Named Property Set includes the
same eight factors above that can be assigned to an element.

When a Named Property Set is applied to an element in a particular stage of a Load
Case, itreplaces only the values that are assigned to the element or that had been ap-
plied in a previous stage; values computed by the Direct Analysis Method of design
are also replaced. However, property modifiers specified with the section property
remain in force and are not affected by the application of a Named Property Set.
The net effect is to use the factors specified in the Named Property Set multiplied
by the factors specified in the section property.

When property modifiers are changed in a staged construction Load Case, they do
not change the response of the structure up to that stage, but only affect subsequent
response. In other words, the effect is incremental. For example, consider a cantile-
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ver with only default (unity) property modifiers, and a staged construction case as
follows:

» Stage 1: Self-weight load is applied, resulting in a tip deflection of 1.0 and
a support moment of 1000.

» Stage 2: Named Property Set “A” is applied that multiplies all stiffnesses
by 2.0, and the mass and weight by 1.0. The tip deflection and support mo-
ment do not change.

» Stage 3: Self-weight load is applied again (incrementally). The resulting
tip deflection is 1.5 and the support moment is 2000. Compared to Stage 1,
the same incremental load is applied, but the structure is twice as stiff.

» Stage 4: Named Property Set “B” is applied that multiplies all stiffnesses,
as well as the mass and weight, by 2.0. The tip deflection and support mo-
ment do not change.

» Stage 5: Self-weight load is applied again (incrementally). The resulting
tip deflection is 2.5 and the support moment is 4000. Compared to Stage 1,
twice the incremental load is applied, and the structure is twice as stiff

Insertion Points

The local 1 axis of the element runs along the neutral axis of the section, i.e., at the
centroid of the section. By default this connects to the joints I and j at the ends of
the element. However, it is often convenient to specify another location on the sec-
tion, such as the top of a beam or an outside corner of a column, to connect to the
joints.

There is a set of pre-defined locations within the section, called cardinal points,
that can be used for this purpose. The available choices are shown in Figure 32
(page 126). The default location is point 10, the centroid.

You can further offset the cardinal point from the joint by specifying joint offsets.
The joint offsets together with the cardinal point make up the insertion point as-
signment. The total offset from the joint to the centroid is given as the sum of the
joint offset plus the distance from the cardinal point to the centroid.

This feature is useful, as an example, for modeling beams and columns when the
beams do not frame into the center of the column. Figure 33 (page 128) shows an el-
evation and plan view of a common framing arrangement where the exterior beams
are offset from the column center lines to be flush with the exterior of the building.
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Figure 32
Frame Cardinal Points

Also shown in this figure are the cardinal points for each member and the joint off-
set dimensions.

Offsets along the neutral axis of the element are usually specified using end offsets
rather than insertion points. See topic “End Offsets” (page 127). End offsets are
treated as part of the length of the element, have element properties and loads, and
may or may not be rigid.

Offsets due to insertion points are external to the element and do not have any mass
or loads. Internally the analysis represents the insertion point by a fully rigid con-
straint that connects the neutral axis to the joints.

Local Axes

The insertion points can interact significantly with the element local coordinate
system. As described previously, the nominal local axes are computed for the de-
fault insertion points, such that the local 1 axis connects joints I and j.

The centroids of the section are then located using both the cardinal point and joint
offsets. Joint offsets may be specified using the global coordinate system or the ele-
ment local system. In the latter case, the nominal local axes are used for this pur-
pose.
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If the neutral axis of the frame section remains parallel to the nominal local 1 axis
(the line connecting the two joints), then no further transformation is needed. The
element local axes are the same as the nominal axes.

If the neutral axis has changed direction, then the element local coordinate system
is computed as follows:

\~73 =\N71 X V2 and
\"'72 :"73 X ‘N]1

where V|, Vs, and V5 and the nominal local axes computed previously based on the
joints; and Vl, Vz, and V3 are the transformed local axes used for analysis. If V, is

vertical, then V; will always be horizontal. Note that the two systems are identical

if V, =V, the usual case.

The nominal axes are used only for determining the direction of joint offsets. The
transformed axes are used for all analysis and design purposes, including loading
and results output.

For non-prismatic elements with non-centroidal cardinal points, the local 1 axis
may not be straight, and as a consequence the local 2 and 3 axes may change orien-
tation between segments. This can be expected to cause jumps in the axial force,
shear, and moments. However, the change will be a small deviation from the axes
that would have been calculated for an element with no insertion points.

End Offsets

Frame elements are modeled as line elements connected at points (joints). How-
ever, actual structural members have finite cross-sectional dimensions. When two
elements, such as a beam and column, are connected at a joint there is some overlap
of the cross sections. In many structures the dimensions of the members are large
and the length of the overlap can be a significant fraction of the total length of a
connecting element.

You may specify two end offsets for each element using parameters ioff and joff
corresponding to ends I and J, respectively. End offset ioff is the length of overlap
for a given element with other connecting elements at joint I. It is the distance from
the joint to the face of the connection for the given element. A similar definition ap-
plies to end offset joff at joint j. See Figure 34 (page 129).
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Figure 33
Example Showing Joint Offsets and Cardinal Points

End offsets are automatically calculated by the SAP2000 graphical interface for
each element based on the maximum Section dimensions of all other elements that
connect to that element at a common joint.
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Figure 34
Frame Element End Offsets

Clear Length

The clear length, denoted L_, is defined to be the length between the end offsets
(support faces) as:

L. =L—(ioff + joff )
where L is the total element length. See Figure 34 (page 129).

If end offsets are specified such that the clear length is less than 1% of the total ele-
ment length, the program will issue a warning and reduce the end offsets propor-
tionately so that the clear length is equal to 1% of the total length. Normally the end
offsets should be a much smaller proportion of the total length.

Rigid-end Factor

An analysis based upon the centerline-to-centerline (joint-to-joint) geometry of
Frame elements may overestimate deflections in some structures. This is due to the
stiffening effect caused by overlapping cross sections at a connection. It is more
likely to be significant in concrete than in steel structures.
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Y ou may specify a rigid-end factor for each element using parameter rigid, which
gives the fraction of each end offset that is assumed to be rigid for bending and
shear deformation. The length rigid-ioff, starting from joint I, is assumed to be
rigid. Similarly, the length rigid-joff is rigid at joint j. The flexible length L , of the

element is given by:
Ly =L - rigid (ioff + joff )

The rigid-zone offsets never affect axial and torsional deformation. The full ele-
ment length is assumed to be flexible for these deformations.

The default value for rigid is zero. The maximum value of unity would indicate that
the end offsets are fully rigid. You must use engineering judgment to select the ap-
propriate value for this parameter. It will depend upon the geometry of the connec-
tion, and may be different for the different elements that frame into the connection.
Typically the value for rigid would not exceed about 0.5.

Effect upon Non-prismatic Elements

At each end of a non-prismatic element, the Section properties are assumed to be
constant within the length of the end offset. Section properties vary only along the
clear length of the element between support faces. This is not affected by the value
of the rigid-end factor, rigid.

See Subtopic “Non-prismatic Sections” (page 120) in this Chapter for more infor-
mation.

Effect upon Internal Force Output

All internal forces and moments are output at the faces of the supports and at other
equally-spaced points within the clear length of the element. No output is produced
within the end offset, which includes the joint. This is not affected by the value of
the rigid-end factor, rigid.

See Topic “Internal Force Output” (page 144) in this Chapter for more information.

Effect upon End Releases

End releases are always assumed to be at the support faces, i.e., at the ends of the
clear length of the element. If a moment or shear release is specified in either bend-
ing plane at either end of the element, the end offset is assumed to be rigid for bend-
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Frame Element End Releases

ing and shear in that plane at that end (i.e., it acts as if rigid = 1). This does not af-
fect the values of the rigid-end factor at the other end or in the other bending plane.

See Topic “End Releases” (page 131) in this Chapter for more information.

End Releases

Normally, the three translational and three rotational degrees of freedom at each
end of the Frame element are continuous with those of the joint, and hence with
those of all other elements connected to that joint. However, it is possible to release
(disconnect) one or more of the element degrees of freedom from the joint when it
is known that the corresponding element force or moment is zero. The releases are
always specified in the element local coordinate system, and do not affect any other
element connected to the joint.

In the example shown in Figure 35 (page 131), the diagonal element has a moment
connection at End I and a pin connection at End J. The other two elements connect-
ing to the joint at End J are continuous. Therefore, in order to model the pin condi-
tion the rotation R3 at End J of the diagonal element should be released. This as-
sures that the moment is zero at the pin in the diagonal element.
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Unstable End Releases

Any combination of end releases may be specified for a Frame element provided
that the element remains stable; this assures that all load applied to the element is
transferred to the rest of the structure. The following sets of releases are unstable,
either alone or in combination, and are not permitted.

* Releasing Ul at both ends;

» Releasing U2 at both ends;

* Releasing U3 at both ends;

* Releasing R1 at both ends;

» Releasing R2 at both ends and U3 at either end;

* Releasing R3 at both ends and U2 at either end.

Effect of End Offsets

End releases are always applied at the support faces, i.¢., at the ends of the element
clear length. The presence of a moment or shear release will cause the end offset to
be rigid in the corresponding bending plane at the corresponding end of the ele-
ment.

See Topic “End Offsets” (page 127) in this Chapter for more information.

Named Property Sets

In addition to directly assigning end releases to frame elements, you can apply them
to a frame element in a staged-construction Load Case using a Named Property Set
of Frame Releases. A Named Property Set includes the same options that can be as-
signed to an element.

When property modifiers are changed in a staged construction Load Case, they do
not change the response of the structure up to that stage, but only affect subsequent
response. In other words, the effect is incremental. For example, consider a beam
with assigned moment releases that is added between two columns in a staged con-
struction case as follows:

» Stage 1: The beam is added to an existing structure and self-weight is
applied. Because the element has moment releases assigned to it, the beam
is added as simply-supported and has no fixed-end moments. The
mid-span moment is 1000.

End Releases
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» Stage 2: Named Property Set “A” is applied that has no end releases. The
mid-span moment does not change.

» Stage 3: Self-weight load is applied again (incrementally). The resulting
mid-span moment increases to 1333, and the end span moments are -667
each.

This example illustrates the common case where beams are initially added as sim-
ply-supported, then connected to provide fully moment continuity. In another com-
mon situation, two independent staged construction cases can be considered: One
for gravity load where certain members have moment releases, and the other for lat-
eral load where the same members have moment continuity. Each of these cases
can be used as the basis for further linear or nonlinear Load Cases, and the results
considered together for design.

Nonlinear Properties

Two types of nonlinear properties are available for the Frame/Cable element: ten-
sion/compression limits and plastic hinges.

When nonlinear properties are present in the element, they only affect nonlinear
analyses. Linear analyses starting from zero conditions (the unstressed state) be-
have as if the nonlinear properties were not present. Linear analyses using the stiff-
ness from the end of a previous nonlinear analysis use the stiffness of the nonlinear
property as it existed at the end of the nonlinear case.

Tension/Compression Limits

You may specify a maximum tension and/or a maximum compression that a
frame/cable element may take. In the most common case, you can define a no-com-
pression cable or brace by specifying the compression limit to be zero.

If you specify a tension limit, it must be zero or a positive value. If you specify a
compression limit, it must be zero or a negative value. If you specify a tension and
compression limit of zero, the element will carry no axial force.

The tension/compression limit behavior is elastic. Any axial extension beyond the
tension limit and axial shortening beyond the compression limit will occur with
zero axial stiffness. These deformations are recovered elastically at zero stiffness.

Bending, shear, and torsional behavior are not affected by the axial nonlinearity.
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Plastic Hinge

Mass

You may insert plastic hinges at any number of locations along the clear length of
the element. Detailed description of the behavior and use of plastic hinges is pre-
sented in Chapter “Frame Hinge Properties” (page 147).

In a dynamic analysis, the mass of the structure is used to compute inertial forces.
The mass contributed by the Frame element is lumped at the joints I and j. No iner-
tial effects are considered within the element itself.

The total mass of the element is equal to the integral along the length of the mass
density, m, multiplied by the cross-sectional area, a, plus the additional mass per
unit length, mpl.

For non-prismatic elements, the mass varies linearly over each non-prismatic seg-
ment of the element, and is constant within the end offsets.

The total mass is apportioned to the two joints in the same way a similarly-distrib-
uted transverse load would cause reactions at the ends of a simply-supported beam.
The effects of end releases are ignored when apportioning mass. The total mass is
applied to each of the three translational degrees of freedom: UX, UY, and UZ. No
mass moments of inertia are computed for the rotational degrees of freedom.

For more information:

* See Topic “Mass Density” (page 77) in Chapter “Material Properties.”

» See Topic “Section Properties” (page 114) in this Chapter for the definition of
a and mpl.

* See Subtopic “Non-prismatic Sections” (page 120) in this Chapter.
* See Topic “End Offsets” (page 127) in this Chapter.

* See Topic “Mass Source” (page 334) in Chapter “Load Patterns”.
» See Chapter “Static and Dynamic Analysis” (page 341).

Self-Weight Load
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Self-Weight Load activates the self-weight of all elements in the model. For a
Frame element, the self-weight is a force that is distributed along the length of the

Mass
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element. The magnitude of the self-weight is equal to the weight density, w, multi-
plied by the cross-sectional area, a, plus the additional weight per unit length, wpl.

For non-prismatic elements, the self-weight varies linearly over each non-prismatic
segment of the element, and is constant within the end offsets.

Self-Weight Load always acts downward, in the global —Z direction. You may
scale the self-weight by a single scale factor that applies equally to all elements in
the structure.

For more information:
* See Topic “Weight Density” (page 78) in Chapter “Material Properties” for the

definition of w.

* See Topic “Section Properties” (page 114) in this Chapter for the definition of
a and wpl..

* See Subtopic “Non-prismatic Sections” (page 120) in this Chapter.
* See Topic “End Offsets” (page 127) in this Chapter.
* See Topic “Self-Weight Load” (page 325) in Chapter “Load Patterns.”

Gravity Load

Gravity Load can be applied to each Frame element to activate the self-weight of
the element. Using Gravity Load, the self-weight can be scaled and applied in any
direction. Different scale factors and directions can be applied to each element.

If all elements are to be loaded equally and in the downward direction, it is more
convenient to use Self-Weight Load.

For more information:

* See Topic “Self-Weight Load” (page 134) in this Chapter for the definition of
self-weight for the Frame element.

* See Topic “Gravity Load” (page 326) in Chapter “Load Patterns.”

Concentrated Span Load

The Concentrated Span Load is used to apply concentrated forces and moments at
arbitrary locations on Frame elements. The direction of loading may be specified in
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Examples of the Definition of Concentrated Span Loads

a fixed coordinate system (global or alternate coordinates) or in the element local
coordinate system.

The location of the load may be specified in one of the following ways:

* Specifying a relative distance, rd, measured from joint I. This must satisfy
0<rd <1 The relative distance is the fraction of element length;

* Specifying an absolute distance, d, measured from joint I. This must satisfy
0<d < L, where L is the element length.

Any number of concentrated loads may be applied to each element. Loads given in
fixed coordinates are transformed to the element local coordinate system. See
Figure 36 (page 136). Multiple loads that are applied at the same location are added
together.

See Chapter “Load Patterns” (page 321) for more information.
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Distributed Span Load

The Distributed Span Load is used to apply distributed forces and moments on
Frame elements. The load intensity may be uniform or trapezoidal. The direction of
loading may be specified in a fixed coordinate system (global or alternate coordi-
nates) or in the element local coordinate system.

See Chapter “Load Patterns” (page 321) for more information.

Loaded Length

Loads may apply to full or partial element lengths. Multiple loads may be applied to
a single element. The loaded lengths may overlap, in which case the applied loads
are additive.

A loaded length may be specified in one of the following ways:

* Specifying two relative distances, rda and rdb, measured from joint I. They
must satisfy 0 < rda< rdb <1. The relative distance is the fraction of element
length;

* Specifying two absolute distances, da and db, measured from joint I. They
must satisfy 0 < da< db < L, where L is the element length;

» Specifying no distances, which indicates the full length of the element.

Load Intensity

The load intensity is a force or moment per unit of length. Except for the case of
projected loads described below, the intensity is measured per unit of element
length.

For each force or moment component to be applied, a single load value may be
given if the load is uniformly distributed. Two load values are needed if the load in-
tensity varies linearly over its range of application (a trapezoidal load).

See Figure 37 (page 138) and Figure 38 (page 139).

Projected Loads

A distributed snow or wind load produces a load intensity (force per unit of element
length) that is proportional to the sine of the angle between the element and the di-
rection of loading. This is equivalent to using a fixed load intensity that is measured
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Examples of the Definition of Distributed Span Loads

per unit of projected element length. The fixed intensity would be based upon the
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Examples of Distributed Span Loads

depth of snow or the wind speed; the projected element length is measured in a
plane perpendicular to the direction of loading.
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Distributed Span Loads may be specified as acting upon the projected length. The
program handles this by reducing the load intensity according to the angle, 6, be-
tween the element local 1 axis and the direction of loading. Projected force loads
are scaled by sin0, and projected moment loads are scaled by cos6. The reduced
load intensities are then applied per unit of element length.

The scaling of the moment loads is based upon the assumption that the moment is
caused by a force acting upon the projected element length. The resulting moment
is always perpendicular to the force, thus accounting for the use of the cosine in-
stead of the sine of the angle. The specified intensity of the moment should be com-
puted as the product of the force intensity and the perpendicular distance from the
element to the force. The appropriate sign of the moment must be given.

Temperature Load
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Temperature Load creates thermal strain in the Frame element. This strain is given
by the product of the Material coefficient of thermal expansion and the temperature
change of the element. All specified Temperature Loads represent a change in tem-
perature from the unstressed state for a linear analysis, or from the previous temper-
ature in a nonlinear analysis.

Three independent Load Temperature fields may be specified:
» Temperature, t, which is constant over the cross section and produces axial
strains

» Temperature gradient, t2, which is linear in the local 2 direction and produces
bending strains in the 1-2 plane

» Temperature gradient, t3, which is linear in the local 3 direction and produces
bending strains in the 1-3 plane

Temperature gradients are specified as the change in temperature per unit length.
The temperature gradients are positive if the temperature increases (linearly) in the
positive direction of the element local axis. The gradient temperatures are zero at
the neutral axes, hence no axial strain is induced.

Each of the three Load Temperature fields may be constant along the element
length or linearly interpolated from values given at the joints by a Joint Pattern.

See Chapter “Load Patterns” (page 321) for more information.

Temperature Load
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Strain Load

Six types of strain load are available, one corresponding to each of the internal
forces and moments in a frame element. These are:

» Axial strain, € |, representing change in length per unit length. Positive strain
increases the length of an unrestrained element, or causes compression in a re-
strained element.

* Shear strains, y, and y,3, representing change in angle per unit length. The an-
gle change is measured between the cross section and the neutral axis. Positive
shear strain causes shear deformation in the same direction as would positive
shear forces V2 and V3, respectively.

 Torsional curvature, y, representing change in torsional angle per unit length.
Positive curvature causes deformation in the same direction as would positive
torque T.

» Bending curvatures, y , and y 5, representing change in angle per unit length.
The angle is measured between adjacent sections that remain normal to the
neutral axis. Positive curvature causes bending deformation in the same direc-
tion as would positive moments M2 and M3, respectively.

Each of the Strain Loads may be constant along the element length or linearly inter-
polated from values given at the joints by a Joint Pattern.

In an unrestrained element, strain loads cause deformation between the two ends of
the element, but induce no internal forces. This unrestrained deformation has the
same sign as would deformation caused by the corresponding (conjugate) forces
and moments acting on the element. On the other hand, strain loading in a re-
strained element causes corresponding internal forces that have the opposite sign as
the applied strain. Most elements in a real structure are connected to finite stiffness,
and so strain loading would cause both deformation and internal forces. Note that
the effects of shear and bending strain loading are coupled.

For more information, see Topic “Internal Force Output” (page 144) in this chapter,
and also Chapter “Load Patterns” (page 321.)

Deformation Load

While Strain Load specifies a change in deformation per unit length, Deformation
Load specifies the total deformation between the two ends of an unrestrained ele-
ment. Deformation Load is internally converted to Strain Load, so you should
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choose whichever type of loading is most conveniently specified for your particular
application.

Currently only axial Deformation Load is available. The specified axial deforma-
tion is converted to axial Strain Load by simply dividing by the element length. The
computed strain loads are assumed to be constant along the length of the element.

See Chapter “Load Patterns” (page 321) for more information.

Target-Force Load

Target-Force Load is a special type of loading where you specify a desired axial
force, and deformation load is iteratively applied to achieve the target force. Since
the axial force may vary along the length of the element, you must also specify the
relative location where the desired force is to occur. Target-Force loading is only
used for nonlinear static and staged-construction analysis. If applied in any other
type of Load Case, it has no effect.

Unlike all other types of loading, target-force loading is not incremental. Rather,
you are specifying the total force that you want to be present in the frame element at
the end of the Load Case or construction stage. The applied deformation that is cal-
culated to achieve that force may be positive, negative, or zero, depending on the
force present in the element at the beginning of the analysis. When a scale factor is
applied to a Load Pattern that contains Target-Force loads, the total target force is
scaled. The increment of applied deformation that is required may change by a dif-
ferent scale factor.

See Topic “Target-Force Load” (page 331) in Chapter “Load Patterns” and Topic
“Target-Force Iteration” (page 444) in Chapter “Nonlinear Static Analysis” for
more information.

Internal Force Output
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The Frame element internal forces are the forces and moments that result from in-
tegrating the stresses over an element cross section. These internal forces are:

» P, the axial force

e V2, the shear force in the 1-2 plane

* V3, the shear force in the 1-3 plane

» T, the axial torque

Target-Force Load
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Frame Element Internal Forces and Moments

* M2, the bending moment in the 1-3 plane (about the 2 axis)
* M3, the bending moment in the 1-2 plane (about the 3 axis)

Internal Force Output
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These internal forces and moments are present at every cross section along the
length of the element, and may be requested as part of the analysis results.

The sign convention is illustrated in Figure 39 (page 143). Positive internal forces
and axial torque acting on a positive 1 face are oriented in the positive direction of
the element local coordinate axes. Positive internal forces and axial torque acting
on a negative face are oriented in the negative direction of the element local coordi-
nate axes. A positive 1 face is one whose outward normal (pointing away from ele-
ment) is in the positive local 1 direction.

Positive bending moments cause compression at the positive 2 and 3 faces and ten-
sion at the negative 2 and 3 faces. The positive 2 and 3 faces are those faces in the
positive local 2 and 3 directions, respectively, from the neutral axis.

Effect of End Offsets

When end offsets are present, internal forces and moments are output at the faces of
the supports and at points within the clear length of the element. No output is pro-
duced within the length of the end offset, which includes the joint. Output will only
be produced at joints I or j when the corresponding end offset is zero.

See Topic “End Offsets” (page 127) in this Chapter for more information.
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Axial stress results are available for graphical display and tabular output along with
the internal forces described above. The axial stress is denoted S11 and is computed
at any point in the frame cross section as:

P M3 M2

Sll=——x2— —x3—
a i33 i22

where
* P is the axial force, and M2 and M3 are the bending moments, as defined in
Topic “Internal Force Output” (page 144)

e ais the cross-sectional area, and i22 and i33 are the section moments of iner-
tia, as defined in Topic “Section Properties” (page 114)

* x2 and x3 are the coordinates of the point where the stress is calculated, mea-
sured from the centroid of the section along the local 2 and 3 axes, respec-
tively.
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Based on this definition, tensile stresses are always positive, and compressive
stresses are always negative, regardless of the material.

Stresses are computed at the same axial stations as are the internal forces. At each
station, stresses are computed at selected stress points over the cross section, with
locations that depend upon the shape of the section:

» [-sections, T-sections, rectangles, boxes, channels, and angles — at all corners
where the maximum stresses could occur

* Cover-plated I sections — at the same locations as for an I-section, plus the ex-
treme corners of the cover plates, if present

+ Circles and pipes — at eight points on the circumference

» Section Designer sections — at the stress points defined when the section was
drawn; if no stress points have been defined, stress points are assumed at the
four corners of the rectangular bounding box for the section; this box has di-
mensions t3 x t2

* General sections and all other shapes — at the four corners of the rectangular
bounding box for the section; this box has dimensions t3 x t2

» Nonprismatic sections — computed as above from the interpolated shape, if the
shape type is the same at both ends of the frame segment; if the shape type is not
the same at both ends, then zero stress is reported.

» For all shapes except the box and pipe, stresses are also computed at the cen-
troid of the section

In addition to the value of S11 at each stress point, two extreme stress values are re-
ported at each station:

* S11Max — the maximum value over all stress points at that station

e S11Min — the minimum value over all stress points at that station

Stresses are computed for all load cases except for moving-load cases, for which
zero values will be reported.

The following assumptions pertain to the stresses reported for frame elements:

 Stresses are computed for the base material of the section. No account is made
for the modular ratio. This usually has no effect on stresses for any section
types except for some Section Designer shapes.

» Stresses are computed based on the properties of the section assigned to the
frame element. If the section property is changed during a staged-construction
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load case, the calculated stress values may not be appropriate. However, the in-
ternal forces and moments are still correct.

 If any of the properties a, i22, or i33 is zero, the stress S11 will be reported as
zero. It is recommended to use end releases rather than setting the section prop-
erties to zero.

* Property modifiers that are applied to a, i22, or i33 do not change these prop-
erty values when used for stress calculation. In some cases property modifiers
may have an indirect effect upon the stresses if they affect the corresponding
axial force or bending moments.

The description in this topic pertains only to the stress values reported as analysis
results. Stresses used for frame design and bridge design are computed separately,
as appropriate for the applicable material and design procedure.
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Hinge Properties

You may insert plastic hinges at any number of locations along the clear length of
any Frame element or Tendon object. ETABS also admits hinges in vertical
shear-wall elements. Each hinge represents concentrated post-yield behavior in one
or more degrees of freedom. Hinges only affect the behavior of the structure in non-
linear static and nonlinear time-history analyses.

Advanced Topics
* Overview
* Hinge Properties
* Automatic, User-Defined, and Generated Properties
* Automatic Hinge Properties
* Analysis Modeling
* Analysis Results

Overview

Yielding and post-yielding behavior can be modeled using discrete user-defined
hinges. Hinges can be assigned to a frame element at any location along the clear
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length of the element. Uncoupled moment, torsion, axial force and shear hinges are
available. There are also coupled P-M2-M3 hinges which yield based on the inter-
action of axial force and bi-axial bending moments at the hinge location. Subsets of
these hinges may include P-M2, P-M3, and M2-M3 behavior.

Fiber hinges P-M2-M3 can be defined, which are a collection of material points
over the cross section. Each point represents a tributary area and has its own
stress-strain curve. Plane sections are assumed to remain planar for the section,
which ties together the behavior of the material points. Fiber hinges are often more
realistic than force-moment hinges, but are more computationally intensive.

More than one type of frame hinge can exist at the same location, for example, you
might assign both an M3 (moment) and a V2 (shear) hinge to the same end of a
frame element. Hinge properties can be computed automatically from the element
material and section properties according to FEMA-356 (FEMA, 2000) or ACSE
41-13 criteria.

For ETABS, hinges can also be assigned to vertical shear walls. These hinges are of
type fiber P-M3, and always act at the center of the shell element. When hinges are
present in a shear wall shell element, the vertical membrane stress behavior is gov-
erned by hinge, while horizontal and shear membrane stress, as well as out-of-plane
bending behavior, are governed by the properties of the shell element.

Hinges only affect the behavior of the structure in nonlinear static and nonlinear
time-history analyses. Hinge behavior does not affect nonlinear modal time-history
(FNA) analyses unless the hinges are modeled as links, as described later in this
chapter.

Strength loss is permitted in the hinge properties, and in fact the FEMA and ASCE
hinges assume a sudden loss of strength. However, you should use this feature judi-
ciously. Sudden strength loss is often unrealistic and can be very difficult to ana-
lyze, especially when elastic snap-back occurs. We encourage you to consider
strength loss only when necessary, to use realistic negative slopes, and to carefully
evaluate the results.

To help with convergence, the program automatically limits the negative slope of a
hinge to be no stiffer than 10% of the elastic stiffness of the Frame element contain-
ing the hinge. If you need steeper slopes, you can assign a hinge overwrite that au-
tomatically meshes the frame element around the hinge. By reducing the size of the
meshed element, you can increase the steepness of the drop-off.

Everything in this Chapter applies to Tendon objects as well as to Frame elements,
although only the use of axial hinges makes sense for Tendons.
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The A-B-C-D-E curve for Force vs. Displacement
The same type of curve is used for Moment vs. Rotation

Hinge Properties

A hinge property is a named set of nonlinear properties that can be assigned to
points along the length of one or more Frame elements. You may define as many
hinge properties as you need.

Force- and moment-type hinges are rigid-plastic. For each force degree of freedom
(axial and shear), you may specify the plastic force-displacement behavior. For
each moment degree of freedom (bending and torsion) you may specify the plastic
moment-rotation behavior. Each hinge property may have plastic properties speci-
fied for any number of the six degrees of freedom. The axial force and the two
bending moments may be coupled through an interaction surface. Degrees of free-
dom that are not specified remain elastic.

Fiber hinges are elastic-plastic and consist of a set of material points, each repre-
senting a portion of the frame cross-section having the same material. Force-deflec-
tion and moment-rotation curves are not specified, but rather are computed during
the analysis from the stress-strain curves of the material points.
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Hinge Length

Each plastic hinge is modeled as a discrete point hinge. All plastic deformation,
whether it be displacement or rotation, occurs within the point hinge. This means
you must assume a length for the hinge over which the plastic strain or plastic cur-
vature is integrated.

There is no easy way to choose this length, although guidelines are given in
FEMA-356 and ASCE 41-13. Typically it is a fraction of the element length, and is
often on the order of the depth of the section, particularly for moment-rotation
hinges.

Y ou can approximate plasticity that is distributed over the length of the element by
inserting many hinges. For example, you could insert ten hinges at relative loca-
tions within the element 0f 0.05, 0.15, 0.25, ..., 0.95, each with deformation proper-
ties based on an assumed hinge length of one-tenth the element length. Of course,
adding more hinges will add more computational cost, so this should only be done
where needed.

For force/moment-type hinges, elastic deformation occurs along the entire length
of the Frame element and is not affected by the presence of the hinges. For fiber
hinges, elastic behavior along the hinge length is determined from the hinge mate-
rial stress-strain curves, and the elastic properties of the frame element are ignored
within the hinge length. For this reason, the hinge length should not exceed the
length of frame element.

Plastic Deformation Curve

For each force or moment degree of freedom, you define a force-displacement (mo-
ment-rotation) curve that gives the yield value and the plastic deformation follow-
ing yield. This is done in terms of a curve with values at five points, A-B-C-D-E, as
shown in Figure 40 (page 149). You may specify a symmetric curve, or one that dif-
fers in the positive and negative direction.

The shape of this curve as shown is intended for pushover analysis. You can use
any shape you want. The following points should be noted:

» Point A is always the origin.

* Point B represents yielding. No deformation occurs in the hinge up to point B,
regardless of the deformation value specified for point B. The displacement
(rotation) at point B will be subtracted from the deformations at points C, D,
and E. Only the plastic deformation beyond point B will be exhibited by the
hinge.
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» Point C represents the ultimate capacity for pushover analysis. However, you
may specify a positive slope from C to D for other purposes.

* Point D represents a residual strength for pushover analysis. However, you
may specify a positive slope from C to D or D to E for other purposes.

* Point E represent total failure. Beyond point E the hinge will drop load down to
point F (not shown) directly below point E on the horizontal axis. If you do not
want your hinge to fail this way, be sure to specify a large value for the defor-
mation at point E.

You may specify additional deformation measures at points IO (immediate occu-
pancy), LS (life safety), and CP (collapse prevention). These are informational
measures that are reported in the analysis results and used for performance-based
design. They do not have any effect on the behavior of the structure.

Prior to reaching point B, all deformation is linear and occurs in the Frame element
itself, not the hinge. Plastic deformation beyond point B occurs in the hinge in addi-
tion to any elastic deformation that may occur in the element.

When the hinge unloads elastically, it does so without any plastic deformation, i.e.,
parallel to slope A-B.

Scaling the Curve

When defining the hinge force-deformation (or moment-rotation) curve, you may
enter the force and deformation values directly, or you may enter normalized values
and specify the scale factors that you used to normalized the curve.

In the most common case, the curve would be normalized by the yield force (mo-
ment) and yield displacement (rotation), so that the normalized values entered for
point B would be (1,1). However, you can use any scale factors you want. They do
not have to be yield values.

Remember that any deformation given from A to B is not used. This means that the
scale factor on deformation is actually used to scale the plastic deformation from B
to C, Cto D, and D to E. However, it may still be convenient to use the yield defor-
mation for scaling.

When automatic hinge properties are used, the program automatically uses the
yield values for scaling. These values are calculated from the Frame section proper-
ties. See the next topic for more discussion of automatic hinge properties.
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Strength Loss

Strength loss is permitted in the hinge properties, and in fact the FEMA hinges as-
sume a sudden loss of strength. However, you should use this feature judiciously.
Any loss of strength in one hinge causes load redistribution within the structure,
possibly leading to failure of another hinge, and ultimately causing progressive col-
lapse. This kind of analysis can be difficult and time consuming. Furthermore, any
time negative stiffnesses are present in the model, the solution may not be mathe-
matically unique, and so may be of questionable value.

Sudden strength loss (steep negative stiffness) is often unrealistic and can be even
more difficult to analyze. When an unloading plastic hinge is part of a long beam or
column, or is in series with any flexible elastic subsytem, “elastic snap-back” can
occur. Here the elastic unloading deflection is larger than, and of opposite sign to,
the plastic deformation. This results in the structure deflecting in the direction op-
posite the applied load. SAP2000, ETABS, and CSiBridge have a built-in mecha-
nism to deal with snap-back for certain hinges, but this may not always be enough
to handle several simultaneous snap-back hinge failures.

Consider carefully what you are trying to accomplish with your analysis. A well de-
signed structure, whether new or retrofitted, should probably not have strength loss
in any primary members. If an analysis shows strength loss in a primary member,
you may want to modify the design and then re-analyze, rather than trying to push
the analysis past the first failure of the primary members. Since you need to re-de-
sign anyway, what happens after the first failure is not relevant, since the behavior
will become changed.

To help with convergence, the program automatically limits the negative slope of a
hinge to be no stiffer than 10% of the elastic stiffness of the Frame element contain-
ing the hinge. By doing this, snap-back is prevented within the element, although it
may still occur in the larger structure.

If you need steeper slopes, you can assign a Frame Hinge Overwrite that automati-
cally meshes the Frame object around the hinge. When you assign this overwrite,
you can specify what fraction of the Frame object length should be used for the ele-
ment that contains the hinge. For example, consider a Frame object containing one
hinge at each end, and one in the middle. If you assign a Frame Hinge Overwrite
with a relative length of 0.1, the object will be meshed into five elements of relative
lengths 0.05, 0.4, 0.1, 0.4, and 0.05. Each hinge is located at the center of an ele-
ment with 0.1 relative length, but because two of the hinges fall at the ends of the
object, half of their element lengths are not used. Because these elements are
shorter than the object, their elastic stiffnesses are larger, and the program will per-
mit larger negative stiffnesses in the hinges.
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By reducing the size of the meshed element, you can increase the steepness of the
drop-off, although the slope will never be steeper than you originally specified for
the hinge. Again, we recommend gradual, realistic slopes whenever possible, un-
less you truly need to model brittle behavior.

Types of P-M2-M3 Hinges

Normally the hinge properties for each of the six degrees of freedom are uncoupled
from each other. However, you have the option to specify coupled axial-force/bi-
axial-moment behavior. This is called a P-M2-M3 or PMM hinge. Three types are
available. In summary:

* Isotropic P-M2-M3 hinge: This hinge can handle complex and unsymmetrical
PMM surfaces and can interpolate between multiple moment-rotation curves.
Two-dimensional subsets of the hinge are available. It is limited to isotropic
hysteresis, which may not be suitable for some structures.

* Parametric P-M2-M3 hinge: This hinge is limited to doubly symmetric section
properties and uses a simple parametric definition of the PMM surface.
Hysteretic energy degradation can be specified, making it more suitable than
the isotropic hinge for extensive cyclic loading.

* Fiber P-M2-M3 hinge. This is the most realistic hinge, but may require the
most computational resources in terms of analysis time and memory usage.
Various hysteresis models are available and they can be different for each ma-
terial in the hinge.

These hinges are described in more detail in the following topics.

Isotropic P-M2-M3 Hinge

This hinge can handle complex and unsymmetrical PMM surfaces and can interpo-
late between multiple moment-rotation curves. It is limited to isotropic hysteresis,
which may not be suitable for some structures.

Three additional coupled hinges are available as subsets of the PMM hinge: P-M2,
P-M3, and M2-M3 hinges.

Tension is Always Positive!

It is important to note that SAP2000 uses the sign convention where tension is al-
ways positive and compression is always negative, regardless of the material being
used. This means that for some materials (e.g., concrete) the interaction surface
may appear to be upside down.
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Interaction (Yield) Surface

For the PMM hinge, you specify an interaction (yield) surface in three-dimensional
P-M2-M3 space that represents where yielding first occurs for different combina-
tions of axial force P, minor moment M2, and major moment M3.

The surface is specified as a set of P-M2-M3 curves, where P is the axial force (ten-
sion is positive), and M2 and M3 are the moments. For a given curve, these mo-
ments may have a fixed ratio, but this is not necessary. The following rules apply:

* All curves must have the same number of points.

» For each curve, the points are ordered from most negative (compressive) value
of P to the most positive (tensile).

e The three values P, M2 and M3 for the first point of all curves must be identical,
and the same is true for the last point of all curves

* When the M2-M3 plane is viewed from above (looking toward compression),
the curves should be defined in a counter-clockwise direction

* The surface must be convex. This means that the plane tangent to the surface at
any point must be wholly outside the surface. If you define a surface that is not
convex, the program will automatically increase the radius of any points which
are “pushed in” so that their tangent planes are outside the surface. A warning
will be issued during analysis that this has been done.

You can explicitly define the interaction surface, or let the program calculate it us-
ing one of the following formulas:

e Steel, AISC-LRFD Equations H1-1a and H1-1b with phi=1

* Steel, FEMA-356 Equation 5-4

* Concrete, ACI 318-02 with phi=1

Y ou may look at the hinge properties for the generated hinge to see the specific sur-
face that was calculated by the program.

Moment-Rotation Curves

For PMM hinges you specify one or more moment/plastic-rotation curves corre-
sponding to different values of P and moment angle 6. The moment angle is mea-

sured in the M2-M3 plane, where 0° is the positive M2 axis, and 90° is the positive
M3 axis.
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You may specify one or more axial loads P and one or more moment angles 6. For
each pair (P,0), the moment-rotation curve should represent the results of the fol-
lowing experiment:

* Apply the fixed axial load P.

* Increase the moments M2 and M3 in a fixed ratio (cos 0, sin 8) corresponding
to the moment angle 6.

* Measure the plastic rotations Rp2 and Rp3 that occur after yield.

* Calculate the resultant moment M = M2*cos 6 + M3*sin 0, and the projected
plastic rotation Rp = Rp2*cos 6 + Rp3*sin 0 at each measurement increment

* Plot M vs. Rp, and supply this data to SAP2000

Note that the measured direction of plastic strain may not be the same as the direc-
tion of moment, but the projected value is taken along the direction of the moment.
In addition, there may be measured axial plastic strain that is not part of the projec-
tion. However, during analysis the program will recalculate the total plastic strain
based on the direction of the normal to the interaction (yield) surface.

During analysis, once the hinge yields for the first time, i.e., once the values of P,
M2 and M3 first reach the interaction surface, a net moment-rotation curve is inter-
polated to the yield point from the given curves. This curve is used for the rest of the
analysis for that hinge.

If the values of P, M2, and M3 change from the values used to interpolate the curve,
the curve is adjusted to provide an energy equivalent moment-rotation curve. This
means that the area under the moment-rotation curve is held fixed, so that if the re-
sultant moment is smaller, the ductility is larger. This is consistent with the under-
lying stress strain curves of axial “fibers” in the cross section.

As plastic deformation occurs, the yield surface changes size according to the shape
of the M-Rp curve, depending upon the amount of plastic work that is done. You
have the option to specify whether the surface should change in size equally in the
P, M2, and M3 directions, or only in the M2 and M3 directions. In the latter case,
axial deformation behaves as if it is perfectly plastic with no hardening or collapse.
Axial collapse may be more realistic in some hinges, but it is computationally diffi-
cult and may require nonlinear direct-integration time-history analysis if the struc-
ture is not stable enough the redistribute any dropped gravity load.
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Parametric P-M2-M3 Hinge

This hinge is limited to doubly symmetric section properties and uses a simple
parametric definition of the PMM surface. Hysteretic energy degradation can be
specified, making it more suitable than the isotropic hinge for extensive cyclic
loading.

Two versions of the hinge are available, one for steel frame sections, and one for re-
inforced-concrete frame sections. Currently this hinge is only available in ETABS,
and will be added to SAP2000 and CSiBridge in subsequent versions.

The description and theory for this hinge formulation are presented in the Technical
Note “Parametric P-M2-M3 Hinge Model”. This document can be found in the
Manuals subfolder where the software is installed on your computer. It can be ac-
cessed from inside the software using the menu command Help > Documentation >
Technical Notes.

Detailed descriptions of the input values needed to define the properties for either
the steel or concrete hinge are available from the Help facility within the software.
This can be accessed using the menu command Help > Product Help, or pressing
the F1 key at any time.

Fiber P-M2-M3 Hinge

The Fiber P-M2-M3 (Fiber PMM) hinge models the axial behavior of a number of
representative axial “fibers” distributed across the cross section of the frame ele-
ment. Each fiber has a location, a tributary area, and a stress-strain curve. The axial
stresses are integrated over the section to compute the values of P, M2 and M3.
Likewise, the axial deformation U1 and the rotations R2 and R3 are used to com-
pute the axial strains in each fiber. Plane sections are assumed to remain planar.

You can define you own fiber hinge, explicitly specifying the location, area, mate-
rial and its stress-strain curve for each fiber, or you can let the program automati-
cally create fiber hinges for circular and rectangular frame sections.

The Fiber PMM hinge is more “natural” than the Isotropic or Parametric PMM
hinges described above, since it automatically accounts for interaction, changing
moment-rotation curve, and plastic axial strain. However, it is also more
computationally intensive, requiring more computer storage and execution time.
You may have to experiment with the number of fibers needed to get an optimum
balance between accuracy and computational efficiency.
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Strength loss in a fiber hinge is determined by the strength loss in the underlying
stress-strain curves. Because all the fibers in a cross section do not usually fail at the
same time, the overall hinges tend to exhibit more gradual strength loss than hinges
with directly specified moment-rotation curves. This is especially true if reasonable
hinge lengths are used. For this reason, the program does not automatically restrict
the negative drop-off slopes of fiber hinges. However, we still recommend that you
pay close attention to the modeling of strength loss, and modify the stress-strain
curves if necessary.

For more information:

* See Topic “Stress-Strain Curves” (page 80) in Chapter “Material Properties.”

* See Topic “Section-Designer Sections” (page 118) Chapter “The Frame Ele-
ment.”

Hysteresis Models

The plastic force-deformation or moment-rotation curve defines the nonlinear be-
havior under monotonic loading. This curve, combined with the elastic behavior of
the hinge length in the parent frame element, is also known as the backbone curve
for the hinge.

Under load reversal or cyclic loading, the behavior will deviate from the backbone
curve. Several different hysteresis models are available to describe this behavior
for different types of materials. For the most part, these differ in the amount of en-
ergy they dissipate in a given cycle of deformation, and how the energy dissipation
behavior changes with an increasing amount of deformation.

Hysteresis models are described in Topic “Hysteresis Models” (page 85) of Chap-
ter “Material Properties.”

Hysteresis models are applicable to the different types of hinges as follows:

 Single degree of freedom hinges: All inelastic models (kinematic, degrading,
Takeda, pivot, concrete, BRB hardening, and isotopic)

* Coupled P-M2-M3, P-M2, P-M3, and M2-M3 hinges: Isotropic model only
* Fiber P-M2-M3 hinges: For each material fiber, all models (elastic, kinematic,
degrading, Takeda, pivot, concrete, BRB hardening, and isotopic)

Note that all of these models are available in the current version of ETABS. Some
of the models are not yet available in SAP2000 and CSiBridge but will be added in
subsequent versions.
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Hysteretic behavior may affect nonlinear static and nonlinear time-history load
cases that exhibit load reversals and cyclic loading. Monotonic loading is not af-
fected. Note, however, that even static pushover load cases can produce load rever-
sal in some hinges caused by strength loss in other hinges.

Automatic, User-Defined, and Generated Properties
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There are three types of hinge properties in SAP2000:

* Automatic hinge properties
» User-defined hinge properties

* Generated hinge properties

Only automatic hinge properties and user-defined hinge properties can be assigned
to frame elements. When automatic or user-defined hinge properties are assigned to
a frame element, the program automatically creates a generated hinge property for
each and every hinge.

The built-in automatic hinge properties for steel members are based on Table 5-6 in
FEMA-356. The built-in automatic hinge properties for concrete members are
based on Tables 6-7 and 6-8 in FEMA-356, or on Caltrans specifications for con-
crete columns. After assigning automatic hinge properties to a frame element, the
program generates a hinge property that includes specific information from the
frame section geometry, the material, and the length of the element. You should re-
view the generated properties for their applicability to your specific project.

User-defined hinge properties can either be based on a hinge property generated
from automatic property, or they can be fully user-defined.

A generated property can be converted to user-defined, and then modified and
re-assigned to one or more frame elements. This way you can let the program do
much of the work for you using automatic properties, but you can still customize
the hinges to suit your needs. However, once you convert a generated hinge to
user-defined, it will no longer change if you modify the element, its section or ma-
terial.

It is the generated hinge properties that are actually used in the analysis. They can
be viewed, but they can not be modified. Generated hinge properties have an auto-
matic naming convention of LabelH#, where Label is the frame element label, H
stands for hinge, and # represents the hinge number. The program starts with hinge
number 1 and increments the hinge number by one for each consecutive hinge ap-
plied to the frame element. For example if a frame element label is F23, the gener-
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ated hinge property name for the second hinge assigned to the frame element is
F23H2.

The main reason for the differentiation between defined properties (in this context,
defined means both automatic and user-defined) and generated properties is that
typically the hinge properties are section dependent. Thus it would be necessary to
define a different set of hinge properties for each different frame section type in the
model. This could potentially mean that you would need to define a very large num-
ber of hinge properties. To simplify this process, the concept of automatic proper-
ties is used in SAP2000. When automatic properties are used, the program com-
bines its built-in default criteria with the defined section properties for each ele-
ment to generate the final hinge properties. The net effect of this is that you do sig-
nificantly less work defining the hinge properties because you don’t have to define
each and every hinge.

Automatic Hinge Properties

Automatic hinge properties are based upon a simplified set of assumptions that may
not be appropriate for all structures. You may want to use automatic properties as a
starting point, and then convert the corresponding generated hinges to user-defined
and explicitly overwrite calculated values as needed.

Automatic properties require that the program have detailed knowledge of the
Frame Section property used by the element that contains the hinge. For this reason,
only the following types of automatic hinges are available:

Concrete Beams in Flexure

M2 or M3 hinges can be generated using FEMA Table 6-7 (I) for the following
shapes:

* Rectangle
* Tee
* Angle

* Section Designer

Concrete Columns in Flexure

M2, M3, M2-M3, P-M2, P-M3, or P-M2-M3 hinges can be generated using
FEMA Table 6-8 (I), for the following shapes:
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* Rectangle
* Circle

* Section Designer
or using Caltrans specifications, for the following shapes:

* Section Designer only

Steel Beams in Flexure

M2 or M3 hinges can be generated using FEMA Table 5-6, for the following
shapes:

— I/Wide-flange only

Steel Columns in Flexure

M2, M3, M2-M3, P-M2, P-M3, or P-M2-M3 hinges can be generated using
FEMA Table 5-6, for the following shapes:

* [/Wide-flange

* Box

Steel Braces in Tension/Compression

P (axial) hinges can be generated using FEMA Table 5-6, for the following
shapes:

* I/Wide-flange

* Box

* Pipe

* Double channel

* Double angle

Fiber Hinge

P-M2-M3 hinges can be generated for steel or reinforced concrete members us-
ing the underlying stress-strain behavior of the material for the following
shapes:

* Rectangle

e Circle
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Additional Considerations

You must make sure that all required design information is available to the Frame
section as follows:

* For concrete Sections, the reinforcing steel must be explicitly defined, or else
the section must have already been designed by the program before nonlinear
analysis is performed

» For steel Sections, Auto-select Sections can only be used if they have already
been designed so that a specific section has been chosen before nonlinear anal-
ysis is performed

For more information, see the on-line help that is available while assigning auto-
matic hinges to Frame elements in the Graphical User Interface.

Analysis Modeling

Hinges are assigned to a Frame or Shell (shear wall) element to represent the non-
linear behavior of their parent element. When the analysis model is created, there
are two ways the hinge can be represented:

* Hinge embedded in the element

* Hinge as a separate link element

The latter method is currently only available in the ETABS Ultimate level, and en-
ables hinge behavior to be considered in nonlinear model time-history (FNA) load
cases. As a rule, FNA analysis runs significantly faster than nonlinear direct-inte-
gration time-history analysis. Nonlinear static analysis and nonlinear direct-inte-
gration time history analysis are available for both types of analysis modeling.

When the hinge is modeled as a link element, the parent Frame element is divided at
the hinge location into separate subelements, and a zero-length link element is cre-
ated that contains the hinge property and connects the frame subelements. A very
small amount of axial mass and rotational inertia are added at the two connecting
joints to improve FNA iteration. A similar internal modeling is employed for shear
wall elements when the hinge is modeled as a link element.

A second, independent modeling option is available to assign automatic subdivi-
sion of Frame elements at hinge locations. Using this assignment, you specify a rel-
ative length that is used when creating the analysis model of the hinges for the se-
lected elements. The effect of this depends upon how the hinge is modeled:
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» For the hinge embedded in the element: The Frame object is subdivided into
separate frame elements, with one element containing the hinge that is equal in
length to that specified in the assignment.

This has the advantage of introducing more degrees of freedom into the model
that may improve convergence when multiple hinges are failing at the same
time, with a possible increase in computation time. In addition, steeper
drop-offs are permitted when the hinge curve exhibits strength loss because the
element containing the hinge is shorter, and hence stiffer.

On the other hand, not subdividing the frame element leads to a smaller analy-
sis model, typically requiring less computation time and storage. In addition,
stiffness proportional damping for nonlinear direct-integration time-history
analysis is better modeled in longer elements.

* For the hinge as a separate link element: The subdivision into two frame ele-
ments and a zero-length link is not changed. However, the elastic flexibility of
the link is changed to be equal to the length of the frame element specified in
the assignment, and the corresponding length of the adjacent frame sub-ele-
ments are made rigid.

This has the advantage of improving stiffness-proportional damping in nonlin-
ear direct-integration time-history analysis, and can be recommend for this rea-
son. On the other hand, this is not necessary for FNA analysis.

The default relative length for automatic subdivision is 0.02. Recommended values
typically range from 0.02 to 0.25.

Computational Considerations
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The most important advice is to only add hinges to the model where nonlinear be-
havior is expected to have a significant effect on the analysis and design. Adding
extra hinges increases the time and effort it takes to create the model, to run the
analyses, and to interpret the results.

Start with the simplest model possible so that you can make many analysis runs
quickly. This helps to better understand the behavior of your structure early in the
design process and to correct modeling errors. Add hinges and complexity gradu-
ally as you determine where nonlinearity is expected and/or desired.

Adding hinges everywhere to find the nonlinearity is tempting, but this approach
usually wastes much more time than incrementally growing the model.

Computational Considerations
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Most models with hinges benefit from using event-to-event stepping for nonlinear
static and nonlinear direct-integration time-history load cases. This is particularly
true for the parametric P-M2-M3 hinge. However, it may be necessary to turn off
event-to-event stepping if the model has a very large number of hinges, or if there is
a significant amount of other types of nonlinearity in the structure. This is best de-
termined by running analyses both with and without events to see which is most ef-
ficient.

Most nonlinear time-history analysis benefits from the presence of mass at the non-
linear degrees-of-freedom. Inertia tends to stabilize iteration when the nonlinear
behavior is changing rapidly. This is particularly true for FNA analysis. For
ETABS, it is usually best to define the mass source to include vertical mass and to
not lump the mass at the story levels for models that have hinges.

For FNA analysis, it is usually most efficient to damp out the very high modes.
Some of the Ritz modes needed for FNA analysis can be expected to be of high fre-
quency. An example of how to do this would be to define the load-case damping to
be of type “Interpolated by Frequency”. Then specify your desired structure damp-
ing ratio (say 0.025) for frequencies up to 999 Hz, and a damping ratio of 0.99 for
frequencies above 1000 Hz. You can experiment with this cutoff value to see the ef-
fect on runtime and results.

Analysis Results

For each output step in a nonlinear static or nonlinear direct-integration time-his-
tory Load Case, you may request analysis results for the hinges. These results in-
clude:

* The forces and/or moments carried by the hinge. Degrees of freedom not de-
fined for the hinge will report zero values, even though non-zero values are car-
ried rigidly through the hinge.

» The plastic displacements and/or rotations.

* The most extreme state experienced by the hinge in any degree of freedom.
This state does not indicate whether it occurred for positive or negative defor-
mation:

— AtoB
— BtoC
— CtoD
— DtoE
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- >E

The most extreme performance status experienced by the hinge in any degree
of freedom. This status does not indicate whether it occurred for positive or
negative deformation:

— AtoB
— Bto IO
— I0to LS
LS to CP
- >CP

When you display the deflected shape in the graphical user interface for a nonlinear
static or nonlinear direct-integration time-history Load Case, the hinges are plotted
as colored dots indicating their most extreme state or status:

Bto IO
I0to LS
LS to CP
CPto C
CtoD

DtoE

>E

The colors used for the different states are indicated on the plot. Hinges that have
not experienced any plastic deformation (A to B) are not shown.
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The Cable Element

The Cable element is a highly nonlinear element used to model the catenary behav-
ior of slender cables under their own self-weight. Tension-stiffening and large-de-
flections nonlinearity are inherently included in the formulation. Nonlinear analy-
sis is required to make use of the Cable element. Linear analyses can be performed
that use the stiffness from the end of nonlinear Load Cases.

Advanced Topics

* Overview

» Joint Connectivity
* Undeformed Length
* Shape Calculator

* Degrees of Freedom
* Local Coordinate System
» Section Properties
* Property Modifiers
* Mass

» Self-Weight Load
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* Gravity Load

 Distributed Span Load

e Temperature Load

* Strain and Deformation Load
» Target-Force Load

* Nonlinear Analysis

e Element Output

Overview
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The Cable element uses an elastic catenary formulation to represent the behavior of
a slender cable under its own self-weight, temperature, and strain loading. This be-
havior is highly nonlinear, and inherently includes tension-stiffening (P-delta) and
large-deflection effects. Slack and taut behavior is automatically considered.

In the graphical user interface, you can draw a cable object connecting any two
points. A shape calculator is available to help you determine the undeformed length
of the cable. The undeformed length is extremely critical in determining the behav-
ior of the cable.

An unloaded, slack cable is not stable and has no unique position. Therefore linear
Load Cases that start from zero initial conditions may be meaningless. Instead, all
linear Load Cases should use the stiffness from the end of a nonlinear static Load
Case in which all cables are loaded by their self-weight or other transverse load. For
cases where no transverse load is present on a slack Cable element, the program
will internally assume a very small self-weight load in order to obtain a unique
shape. However, it is better if you apply a realistic load for this purpose.

Each Cable element may be loaded by gravity (in any direction), distributed forces,
strain and deformation loads, and loads due to temperature change. To apply con-
centrated loads, a cable should be divided at the point of loading, and the force ap-
plied to the connecting joint.

Target-force loading is available that iteratively applies deformation load to the ca-
ble to achieve a desired tension.

Element output includes the axial force and deflected shape at a user-specified
number of equally-spaced output stations along the length of the element.

Overview
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You have the option when drawing a cable object in the model to use the catenary
element of this chapter, or to model the cable as a series of straight frame elements.
Using frame elements allows you to consider material nonlinearity and compli-
cated loading, but the catenary formulation is better suited to most applications.

Joint Connectivity

A Cable element is represented by a curve connecting two joints, I and j. The two
joints must not share the same location in space. The two ends of the element are
denoted end I and end J, respectively.

The shape of the cable is defined by undeformed length of the cable and the load
acting on it, unless it is taut with no transverse load, in which case it is a straight
line.

Undeformed Length

In the graphical user interface, you can draw a cable object connecting any two
points. A shape calculator is available to help you determine the undeformed length
of the cable. The relationship between the undeformed length and the chord length
(the distance between the two end joints) is extremely critical in determining the
behavior of the cable.

In simple terms, when the undeformed length is longer that the chord length, the ca-
ble is slack and has significant sag. When the undeformed length is shorter than the
chord length, the cable is taut and carries significant tension with little sag.

When transverse load acts on the cable, there is a transition range where the
undeformed length is close to the chord length. In this regime, the tension and sag
interact in a highly nonlinear way with the transverse load.

Temperature, strain, and distortion loads can change the length of the cable. The ef-
fect of these changes is similar to changing the undeformed length, except that they
do not change the weight of the cable. Strain in the cable due to any source is calcu-
lated as the difference between the total length and the undeformed length, divided
by the undeformed length (engineering strain).

If the undeformed length of a cable is shorter than the chord length at the beginning
of a nonlinear analysis, or when the cable is added to the structure during staged
construction, tension will immediately exist in the cable and iteration may be re-
quired to bring the structure into equilibrium before any load is applied.
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Shape Calculator

168

The ultimate purpose of the shape calculator (also called Cable Layout form) in the
graphical user interface is to help you calculate the undeformed length of a cable
object. By default, the undeformed length is assumed to be equal to the chord
length between the undeformed positions of the two end joints.

You may specify a vertical load acting on the cable consisting of:

» Self-weight (always included in the shape calculator)
» Additional weight per unit of undeformed length of the cable
» Addition load per unit horizontal length between the two joints
Note that these loads are only used in the shape calculator. They are not applied to

the element during analysis. Loads to be used for analysis must be assigned to the
elements in Load Patterns.

You may choose one of the following ways to calculate the undeformed length:
* Specifying the undeformed length, either absolute or relative to the chord
length
* Specifying the maximum vertical sag, measured from the chord to the cable

* Specifying the maximum low-point sag, measured from the joint with the
lowest Z elevation to the lowest point on the cable

* Specifying the constant horizontal component of tension in the cable
* Specifying the tension at either end of the cable

* Requesting the shape which gives the minimum tension at either end of the
cable

See Figure 41 (page 169) for a description of the cable geometry.

Note that there does exist an undeformed length that yields a minimum tension at
either end of the cable. Longer cables carry more self weight, increasing the ten-
sion. Shorter cables are tauter, also increasing the tension. If you intend to specify
the tension at either end, it is a good idea first to determine what is the minimum
tension, since attempts to specify a lower tension will fail. When a larger value of
tension is specified, the shorter solution will be returned.

It is important to note that the shape calculated here may not actually occur during
any Load Case, nor are the tensions calculated here directly imposed upon the ca-
ble. Only the cable length is determined. The deformed shape of the cable and the

Shape Calculator
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Ti
1, J = Joints
L, =Undeformed length
Lc =Chord length
H = Horizontal force
T